mean field evolution of fermionic systems
play

Mean field evolution of fermionic systems Marcello Porta University - PowerPoint PPT Presentation

Mean field evolution of fermionic systems Marcello Porta University of Z urich, Institute for Mathematics QMath13: Mathematical Results in Quantum Physics Georgia Tech, 8-11 October, 2016 Outline Outline Introduction. Results: 1


  1. Mean field evolution of fermionic systems Marcello Porta University of Z¨ urich, Institute for Mathematics QMath13: Mathematical Results in Quantum Physics Georgia Tech, 8-11 October, 2016

  2. Outline Outline • Introduction. • Results: 1 Derivation of the time-dependent Hartree-Fock equation, for pure and mixed states, with bounded interaction potentials. 2 Extension to Coulomb interactions. • Conclusions. Marcello Porta Mean field evolution of fermions October 8, 2016 1 / 12

  3. Introduction Introduction Marcello Porta Mean field evolution of fermions October 8, 2016 1 / 12

  4. Introduction Fermionic mean field regime • N interacting fermionic particles in R 3 , ψ N ∈ L 2 a ( R 3 N ). V ( x i − x j ) = pair interaction potential, V ext ( x i ) = confining potential. System confined in Λ ⊂ R 3 , | Λ | = O (1). Density = O ( N ). Marcello Porta Mean field evolution of fermions October 8, 2016 2 / 12

  5. Introduction Fermionic mean field regime • N interacting fermionic particles in R 3 , ψ N ∈ L 2 a ( R 3 N ). V ( x i − x j ) = pair interaction potential, V ext ( x i ) = confining potential. System confined in Λ ⊂ R 3 , | Λ | = O (1). Density = O ( N ). • Mean field regime. V varies on scale O (1), and V → N − 1 / 3 V . In fact: E int = � ψ N , � N i<j V ( x i − x j ) ψ N � = O ( N 2 ) E kin = � ψ N , � N i =1 − ∆ x i ψ N � � N 5 / 3 (by Lieb-Thirring inequality) Marcello Porta Mean field evolution of fermions October 8, 2016 2 / 12

  6. Introduction Fermionic mean field regime • N interacting fermionic particles in R 3 , ψ N ∈ L 2 a ( R 3 N ). V ( x i − x j ) = pair interaction potential, V ext ( x i ) = confining potential. System confined in Λ ⊂ R 3 , | Λ | = O (1). Density = O ( N ). • Mean field regime. V varies on scale O (1), and V → N − 1 / 3 V . In fact: E int = � ψ N , � N i<j V ( x i − x j ) ψ N � = O ( N 2 ) E kin = � ψ N , � N i =1 − ∆ x i ψ N � � N 5 / 3 (by Lieb-Thirring inequality) • Mean field Hamiltonian: N N � � � � H trap + N − 1 / 3 := − ∆ j + V ext ( x j ) V ( x i − x j ) N j =1 i<j Marcello Porta Mean field evolution of fermions October 8, 2016 2 / 12

  7. Introduction Hartree-Fock theory • Hartree-Fock ground state energy: E N HF := inf ψ Slater � ψ Slater , H trap ψ Slater � N 1 √ ψ Slater ( x 1 , . . . , x N ) = det f i ( x j ) , � f i , f j � = δ ij . N ! • Setting ω N := N tr 2 ,...,N | ψ Slater �� ψ Slater | = � N i =1 | f i �� f i | , � ψ Slater , H trap ψ Slater � = tr( − ∆ + V ext ) ω N N � 1 V ( x − y )( ω N ( x ; x ) ω N ( y ; y ) − | ω N ( x ; y ) | 2 ) + 2 N 1 / 3 One expects that, as N → ∞ : � ψ, H trap ψ � E N N = E N GS := inf HF + smaller order terms , � ψ, ψ � ψ ∈ L 2 a ( R 3 N ) Proven for large atoms: Bach ’92, Graf-Solovej ’94 . Marcello Porta Mean field evolution of fermions October 8, 2016 3 / 12

  8. Introduction Hartree-Fock theory • Hartree-Fock ground state energy: E N HF := inf ψ Slater � ψ Slater , H trap ψ Slater � N 1 √ ψ Slater ( x 1 , . . . , x N ) = det f i ( x j ) , � f i , f j � = δ ij . N ! • Setting ω N := N tr 2 ,...,N | ψ Slater �� ψ Slater | = � N i =1 | f i �� f i | , � ψ Slater , H trap ψ Slater � = tr( − ∆ + V ext ) ω N N � 1 V ( x − y )( ω N ( x ; x ) ω N ( y ; y ) − | ω N ( x ; y ) | 2 ) + 2 N 1 / 3 One expects that, as N → ∞ : � ψ, H trap ψ � E N N = E N GS := inf HF + smaller order terms , � ψ, ψ � ψ ∈ L 2 a ( R 3 N ) Proven for large atoms: Bach ’92, Graf-Solovej ’94 . • Next: Thomas-Fermi theory ( Lieb-Simon ’73, Fournais-Lewin-Solovej ’15 ). Marcello Porta Mean field evolution of fermions October 8, 2016 3 / 12

  9. Introduction Fermionic mean-field dynamics • Suppose that V ext = 0 at t = 0. Dynamics: � N N � � � − ∆ x j + N − 1 / 3 V ( x i − x j ) i∂ t ψ N,τ = ψ N,τ j =1 i<j • E kin ∼ N 5 / 3 ⇒ velocity ∼ N 1 / 3 . Time scale: τ ∼ N − 1 / 3 . Marcello Porta Mean field evolution of fermions October 8, 2016 4 / 12

  10. Introduction Fermionic mean-field dynamics • Suppose that V ext = 0 at t = 0. Dynamics: � N N � � � − ∆ x j + N − 1 / 3 V ( x i − x j ) i∂ t ψ N,τ = ψ N,τ j =1 i<j • E kin ∼ N 5 / 3 ⇒ velocity ∼ N 1 / 3 . Time scale: τ ∼ N − 1 / 3 . • Introducing the rescaled time t = N 1 / 3 τ : � N � N � � iN 1 / 3 ∂ t ψ N,t = − ∆ j + N − 1 / 3 V ( x i − x j ) ψ N,t j =1 i<j Marcello Porta Mean field evolution of fermions October 8, 2016 4 / 12

  11. Introduction Fermionic mean-field dynamics • Suppose that V ext = 0 at t = 0. Dynamics: � N N � � � − ∆ x j + N − 1 / 3 V ( x i − x j ) i∂ t ψ N,τ = ψ N,τ j =1 i<j • E kin ∼ N 5 / 3 ⇒ velocity ∼ N 1 / 3 . Time scale: τ ∼ N − 1 / 3 . • Introducing the rescaled time t = N 1 / 3 τ : � N � N � � iN 1 / 3 ∂ t ψ N,t = − ∆ j + N − 1 / 3 V ( x i − x j ) ψ N,t j =1 i<j • Let ε = N − 1 / 3 . Multiplying LHS and RHS by ε 2 : � N � � N � − ε 2 ∆ j + N − 1 V ( x i − x j ) iε∂ t ψ N,t = ψ N,t j =1 i<j Mean-field limit coupled with a semiclassical scaling. Marcello Porta Mean field evolution of fermions October 8, 2016 4 / 12

  12. Introduction Hartree-Fock and Vlasov dynamics • Let γ (1) N = N tr 2 ,...,N | ψ N �� ψ N | ≃ ω N , with ω N = ω 2 N (Slater det.). • Expect: for N ≫ 1, γ (1) N,t ≃ ω N,t = solution of time dep. HF equation: iε∂ t ω N,t = [ − ε 2 ∆ + V ∗ ρ t − X t , ω N,t ] where ρ t ( x ) = N − 1 ω N,t ( x ; x ) and X t ( x ; y ) = N − 1 V ( x − y ) ω N,t ( x ; y ). Marcello Porta Mean field evolution of fermions October 8, 2016 5 / 12

  13. Introduction Hartree-Fock and Vlasov dynamics • Let γ (1) N = N tr 2 ,...,N | ψ N �� ψ N | ≃ ω N , with ω N = ω 2 N (Slater det.). • Expect: for N ≫ 1, γ (1) N,t ≃ ω N,t = solution of time dep. HF equation: iε∂ t ω N,t = [ − ε 2 ∆ + V ∗ ρ t − X t , ω N,t ] where ρ t ( x ) = N − 1 ω N,t ( x ; x ) and X t ( x ; y ) = N − 1 V ( x − y ) ω N,t ( x ; y ). • Wigner transform of ω N,t : � � � ε 3 x + εy 2 , x − εy e − ip · y W N,t ( x, p ) := dy ω N,t (2 π ) 3 2 As N → ∞ , Vlasov equation: � � ∂ t W ∞ ,t ( x, p ) + p · ∇ x W ∞ ,t ( x, p ) = ∇ x V ∗ ρ t ( x ) · ∇ p W ∞ ,t ( x, p ) Marcello Porta Mean field evolution of fermions October 8, 2016 5 / 12

  14. Introduction Hartree-Fock and Vlasov dynamics • Let γ (1) N = N tr 2 ,...,N | ψ N �� ψ N | ≃ ω N , with ω N = ω 2 N (Slater det.). • Expect: for N ≫ 1, γ (1) N,t ≃ ω N,t = solution of time dep. HF equation: iε∂ t ω N,t = [ − ε 2 ∆ + V ∗ ρ t − X t , ω N,t ] where ρ t ( x ) = N − 1 ω N,t ( x ; x ) and X t ( x ; y ) = N − 1 V ( x − y ) ω N,t ( x ; y ). • Wigner transform of ω N,t : � � � ε 3 x + εy 2 , x − εy e − ip · y W N,t ( x, p ) := dy ω N,t (2 π ) 3 2 As N → ∞ , Vlasov equation: � � ∂ t W ∞ ,t ( x, p ) + p · ∇ x W ∞ ,t ( x, p ) = ∇ x V ∗ ρ t ( x ) · ∇ p W ∞ ,t ( x, p ) • Narnhofer-Sewell ’81, Spohn ’81; Elgart-Erd˝ os-Schlein-Yau ’04; Bardos-Golse-Gottlieb-Mauser ’03, Fr¨ ohlich-Knowles ’11 Marcello Porta Mean field evolution of fermions October 8, 2016 5 / 12

  15. Results Results Marcello Porta Mean field evolution of fermions October 8, 2016 5 / 12

  16. Pure states Hartree-Fock dynamics of pure states � V ( p ) | (1 + | p | ) 2 < ∞ . dp | � 1 (interaction) V ∈ L 1 ( R 3 ), such that a ( R 3 N ) s.t. tr | γ (1) 2 (initial data) ψ N ∈ L 2 N − ω N | ≤ C , with ω N = ω 2 N and tr | [ e iq · x , ω N ] | ≤ CNε (1 + | q | ) , tr | [ ε ∇ , ω N ] | ≤ CNε Theorem (Benedikter-P-Schlein, Comm. Math. Phys. ’14) Let γ (1) N,t be the reduced 1PDM of ψ N,t = e − iH N t/ε ψ N . Let ω N,t be the sol. of iε∂ t ω N,t = [ − ε 2 ∆ + V ∗ ρ t − X t , ω N,t ] , ω N, 0 ≡ ω N Then, for some constant c > 0 and for all t ∈ R : N,t − ω N,t | ≤ N 1 / 2 exp( c exp( c | t | )) � γ (1) tr | γ (1) N,t − ω N,t � HS ≤ exp( c exp( c | t | )) , Marcello Porta Mean field evolution of fermions October 8, 2016 6 / 12

  17. Pure states Remarks 1 Result still holds replacing Hartree-Fock with Hartree: ω N,t = [ − ε 2 ∆ + V ∗ ρ t , � iε∂ t � ω N,t ] 2 Pseudorelativistic case [Benedikter-P-Schlein, J. Math. Phys. ’14] : � N � � � − ε 2 ∆ j + m 2 + N − 1 � iε∂ t ψ N,t = V ( x i − x j ) ψ N,t j =1 i<j with m = O (1). Under similar assumptions, we proved the emergence of the pseudorelativistic time-dependent HF equation: � − ε 2 ∆ + m 2 + V ∗ ρ t − X t , ω N,t ] . iε∂ t ω N,t = [ 3 Commutator estimates ≡ semiclassical structure. Implied by � x − y � � x + y � ω N ( x ; y ) ≃ Nϕ ξ for suitable ϕ , ξ . ε 2 true for the semiclassical approximation of the HF ground state. 4 Similar result: Petrat-Pickl ’14 . Marcello Porta Mean field evolution of fermions October 8, 2016 7 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend