mean field approximation methods and information geometry
play

Mean field approximation methods and information geometry Shiro - PowerPoint PPT Presentation

Mean field approximation methods and information geometry Shiro Ikeda ISM, Tokyo, Japan 31 August 2009 Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 1 / 38 Outline Belief Propagation 1 Information Geometrical View 2 Survey


  1. Mean field approximation methods and information geometry Shiro Ikeda ISM, Tokyo, Japan 31 August 2009 Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 1 / 38

  2. Outline Belief Propagation 1 Information Geometrical View 2 Survey Propagation (SP) 3 Conclusion 4 Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 2 / 38

  3. Belief Propagation Graphical model and inference Graphical Model Example Stochastic Variable x l d x = ( x i , x j , x k , x l ) T b x i a Clique x k c r ∈ L = { a, b, c, d } x j Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 3 / 38

  4. Belief Propagation Graphical model and inference Graphical model Joint distribution q ( x ) = 1 � ψ r ( x r ) Z r ∈L �� � = exp c r ( x r ) − ϕ q . r ∈L �� � � ψ r ( x r ) > 0 , Z = ψ r ( x r ) x r ∈L c r ( x r ) = log ψ r ( x r ) , ϕ q = log Z x r = { x i | i ∈ V ( r ) } , V ( r ) : member of clique r. Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 4 / 38

  5. Belief Propagation Graphical model and inference Belief Propagation Message update For each ( r, i ) , update messages ν ri ( x i ) , µ ri ( x i ) . initialize t = 1 , ν ri ( x i ) t = 1 / 2 µ ri ( x i ) t = 1 / 2 1 update messages as follows 2 ν t +1 � � µ t ri ( x i ) ∝ ψ r ( x r ) rj ( x j ) x r \ x i j ∈ V ( r ) \ i µ t +1 � ν t +1 ri ( x i ) ∝ si ( x i ) , s ∈N ( i ) \ r belief (marginal distribution) is 3 � b t +1 ν t +1 ( x i ) ∝ ri ( x i ) i r ∈N ( i ) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 5 / 38

  6. Information Geometrical View Information Geometrical View Our results Information geometry: Applied differential geometry to statistical/stochastic models. Amari, (1985). Springer-Verlag . Murray & Rice, (1993). Chipman & Hall . Amari & Nagaoka, (2000). AMS and Oxford University Press . Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 6 / 38

  7. Information Geometrical View Information Geometry Information Geometry S r ( x ) S : x Space of probability distribu- tions. Each point r ( x ) ∈ S is a probability distribution Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 7 / 38

  8. Information Geometrical View Information Geometry Information Geometry S r ( x ) { p ( x ; θ ) } : M = distributions parametrized by θ . M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 8 / 38

  9. ∆ � T I ( � ) ∆ � ∆ � Information Geometrical View Information Geometry Information Geometry S r ( x ) M = { p ( x ; θ ) } : Model manifold M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 9 / 38

  10. Information Geometrical View Information Geometry Information Geometry S r ( x ) ˆ θ = argmin KL ( r ( x ); p ( x ; θ )) m –projection θ ∈ Θ Maximum Likelihood: m -projection to the model If the model is an exponential family, ˆ θ projection is unique. M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 10 / 38

  11. Information Geometrical View Information Geometry Information Geometry S r ( x ) If p ( x ; θ ) is an exponential family, m –projection and its sufficient statistics is t ( x ) , m - projection gives E r ( x ) [ t ( x )] = E p ( x ; θ ) [ t ( x )] ˆ θ M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 11 / 38

  12. Information Geometrical View Information Geometry Information Geometry S r ( x ) ˆ = argmin KL ( p ( x ; θ ); r ( x )) θ mf e –projection θ ∈ Θ Naive Mean Field approximation: e - projection For an exponential family, there are a ˆ θ mf lot of local minima. M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 12 / 38

  13. Information Geometrical View Information Geometry Information Geometry S r ( x ) In Statistical Physics, multiple lo- e –projection cal minima are important. They consider the multiple solutions corre- sponds to landscape of energy func- ˆ θ mf tion and “phase transitions.” M = { p ( x ; θ ) } Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 13 / 38

  14. Information Geometrical View Belief Propagation and Information Geometry Information Geometrical View Our results Discuss the accuracy, convergence of LBP with information geometry Ikeda, Tanaka, & Amari, (2004). IEEE tr. on IT , 50(6) , 1097-1114. Ikeda, Tanaka, & Amari, (2004). Neural Comput. , 50(6) , 1779-1810. Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 14 / 38

  15. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Joint distribution S q ( x ) x l d b x i a x k c x j �� � q ( x ) = exp c r ( x ) − ψ q r Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 15 / 38

  16. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Single link models S q ( x ) x l d b M r x i a x k c x j � � M r = p r ( x ; ζ r ) = exp( c r ( x ) + ζ r · x − ϕ q ( ζ r )) , r = 1 , · · · , L. Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 16 / 38

  17. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Marginals S q ( x ) x l d b M r x i a x k M 0 c x j � � M 0 = p 0 ( x ; θ ) = exp( θ · x − ϕ 0 ( θ )) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 17 / 38

  18. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Convergence S q ( x ) M ( θ ) = { Product of marginals p 0 ( x ; θ ) } p r ( x ; ζ r ) M r M ( θ ) Condition 1 M 0 p 0 ( x ; θ ) , p r ( x ; ζ r ) ∈ M ( θ ) , p 0 ( x ; θ ) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 18 / 38

  19. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation At convergent points S q ( x ) p r ( x ; ζ r ) M r If M ( θ ) includes q ( x ) p 0 ( x ; θ ) is the true marginals. M ( θ ) M 0 p 0 ( x ; θ ) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 19 / 38

  20. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Convergence S q ( x ) E = { log -linear mixture ofp 0 , p r } 1 � Z E ( t ) p 0 ( x ; θ ) t 0 � p r ( x ; ζ r ) r p r ( x ; ζ r ) t r = M r � � t r =1 � � � E M 0 Condition 2 p 0 ( x ; θ ) q ( x ) , p 0 ( x ; θ ) , p r ( x ; ζ r ) ∈ E Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 20 / 38

  21. Information Geometrical View Belief Propagation and Information Geometry Belief Propagation Convergence S q ( x ) E Theorem When p 0 ( x ; θ ) , and p r ( x ; ζ r ) r = 1 , · · · , L p r ( x ; ζ r ) satisfies M r Condition 1 and Condition 2 M ( θ ) ↔ M 0 It is the convergent point of BP. p 0 ( x ; θ ) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 21 / 38

  22. Information Geometrical View Improving BP Approximate accuracy Perturbation analysis Difference between E and M ( θ ) → Accuracy x q : expectation of x w.r.t. q ( x ) . x BP : convergent point of BP. x q ≃ x BP + 1 B rs x BP + 1 �� � � � B rst − B rrr x BP . 2 6 r � = s rst r B rs x BP : order 4 loop, embedded m –curvature of E B rst x BP : order 6 loop, torsion of E . x l x l d d b b x i x i a a x k x k c c x j x j Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 22 / 38

  23. Information Geometrical View Improving BP Convergence e –constraint algorithm S S q ( x ) q ( x ) E E p r ( x ; ζ r ) p r ( x ; ζ r ) M r M r M 0 M 0 p 0 ( x ; θ ) p 0 ( x ; θ ) Condition 2 is always satisfied, update parameters to satisfy Condition 1 Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 23 / 38

  24. Information Geometrical View Improving BP Convergence e –constraint algorithm S S q ( x ) q ( x ) E E p r ( x ; ζ r ) p r ( x ; ζ r ) M r M r M ( θ ) M 0 M 0 p 0 ( x ; θ ) p 0 ( x ; θ ) BP, TRP (Wainwright, et al. NIPS*14) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 24 / 38

  25. Information Geometrical View Improving BP Convergence m –constraint algorithm S S q ( x ) q ( x ) p r ( x ; ζ r ) p r ( x ; ζ r ) M r M r M ( θ ) M ( θ ) M 0 M 0 p 0 ( x ; θ ) p 0 ( x ; θ ) Condition 1 is always satisfied, update parameters to satisfy Condition 2 Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 25 / 38

  26. Information Geometrical View Improving BP Convergence m –constraint algorithm S S q ( x ) q ( x ) E p r ( x ; ζ r ) p r ( x ; ζ r ) M r M r M ( θ ) M ( θ ) M 0 M 0 p 0 ( x ; θ ) p 0 ( x ; θ ) CCCP (Yuille & Rangarajan, NIPS*15) Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 26 / 38

  27. Survey Propagation (SP) SP Survey Propagation Background M´ ezard, Parisi, & Zecchina, (2002). Science , 297 , 812–815. Method to analyze K-sat problems. 3-sat problem ( x 1 ∨ ¯ x 2 ∨ x 3 ) ∧ (¯ x 1 ∨ ¯ x 4 ∨ x 5 ) ∧ ( x 4 ∨ x 2 ∨ x 3 ) 3-sat is NP complete. For above example, ( x 1 , x 2 , x 3 , x 4 , x 5 ) = (+ , + , ∗ , ∗ , +) is a solution. Also ( ∗ , ∗ , + , − , ∗ ) is. Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 27 / 38

  28. Survey Propagation (SP) SP Survey Propagation Notation ψ 1 ( x 1 ) = 1 − 1 8(1 − x 1 )(1 + x 2 )(1 − x 3 ) ψ 1 ( x 1 ) is 1 if ( x 1 ∨ ¯ x 2 ∨ x 3 ) is True, otherwise 0 , and � V = ( x 1 ∨ ¯ x 2 ∨ x 3 ) ∧ (¯ x 1 ∨ ¯ x 4 ∨ x 5 ) ∧ ( x 4 ∨ x 2 ∨ x 3 ) = ψ r ( x r ) r ψ r ( x r ) = 1 − 1 � (1 + J ri x i ) , J ri ∈ {− 1 , +1 } 8 i ∈ V ( r ) if V = 1 is 1 , it is SAT. Ikeda (ISM) MF approx and Info Geom 31/Aug/2009 28 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend