maximally entangled mixed states with fixed marginals
play

Maximally entangled mixed states with fixed marginals Giuseppe Baio - PowerPoint PPT Presentation

Maximally entangled mixed states with fixed marginals Giuseppe Baio SUPA & University of Strathclyde, Glasgow, UK 51 Symposium of Mathematical Physics, Toru, Poland 17 th June 2019 17 th June 2019 Giuseppe Baio 51 SMP Toru 1 / 22 My


  1. Maximally entangled mixed states with fixed marginals Giuseppe Baio SUPA & University of Strathclyde, Glasgow, UK 51 Symposium of Mathematical Physics, Toruń, Poland 17 th June 2019 17 th June 2019 Giuseppe Baio 51 SMP Toruń 1 / 22

  2. My research activity @ Strathclyde Computational Nonlinear and Quantum Optics Cold Atoms, Nanophotonics, Quantum Information and Many-Body Physics, Structured Light etc. http://cnqo.phys.strath.ac.uk ColOpt ITN Collective effects and optomechanics in ultra cold matter https://www.colopt.eu/ 17 th June 2019 Giuseppe Baio 51 SMP Toruń 2 / 22

  3. My research activity @ Strathclyde Computational Nonlinear and Quantum Optics Cold Atoms, Nanophotonics, Quantum Information and Many-Body Physics, Structured Light etc. http://cnqo.phys.strath.ac.uk ColOpt ITN Collective effects and optomechanics in ultra cold matter https://www.colopt.eu/ Talk based on recent paper: Phys. Rev. A 99, 062312 (2019) Joint work with: D. Chruściński, G. Sarbicki (Toruń, Poland), P. Horodecki (Gdańsk, Poland), A. Messina (Palermo, Italy) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 2 / 22

  4. Outline Maximally entangled mixed states (MEMS) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 3 / 22

  5. Outline Maximally entangled mixed states (MEMS) Fixing marginals: reconstructing states from local information 17 th June 2019 Giuseppe Baio 51 SMP Toruń 3 / 22

  6. Outline Maximally entangled mixed states (MEMS) Fixing marginals: reconstructing states from local information What is known: Two qubit case 17 th June 2019 Giuseppe Baio 51 SMP Toruń 3 / 22

  7. Outline Maximally entangled mixed states (MEMS) Fixing marginals: reconstructing states from local information What is known: Two qubit case Higher dimensions: Two qutrit case and quasidistillation 17 th June 2019 Giuseppe Baio 51 SMP Toruń 3 / 22

  8. Outline Maximally entangled mixed states (MEMS) Fixing marginals: reconstructing states from local information What is known: Two qubit case Higher dimensions: Two qutrit case and quasidistillation Future directions 17 th June 2019 Giuseppe Baio 51 SMP Toruń 3 / 22

  9. Preliminaries: Mixed bipartite entanglement and measures von Neumann entropy for pure states | Ψ AB �� Ψ AB | : E (Ψ AB ) = S ( ρ A ) = − Tr( ρ A log ρ A ) (1) 1 M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1 (2007). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 4 / 22

  10. Preliminaries: Mixed bipartite entanglement and measures von Neumann entropy for pure states | Ψ AB �� Ψ AB | : E (Ψ AB ) = S ( ρ A ) = − Tr( ρ A log ρ A ) (1) For mixed states, i.e. Tr( ρ 2 AB ) < 1 : convex roof construction, e.g.: � EOF( ρ AB ) = min p k E (Ψ k ) (2) p k , Ψ k k 1 M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1 (2007). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 4 / 22

  11. Preliminaries: Mixed bipartite entanglement and measures von Neumann entropy for pure states | Ψ AB �� Ψ AB | : E (Ψ AB ) = S ( ρ A ) = − Tr( ρ A log ρ A ) (1) For mixed states, i.e. Tr( ρ 2 AB ) < 1 : convex roof construction, e.g.: � EOF( ρ AB ) = min p k E (Ψ k ) (2) p k , Ψ k k Several tools adopted: concurrence and negativity 1 : N ( ρ AB ) ≡ 1 2 ( � ρ τ AB � 1 − 1) (3) Partial transpose: ρ τ AB = ( I ⊗ τ ) ρ AB 1 M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1 (2007). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 4 / 22

  12. Maximally entangled mixed states (MEMS) Relation between entanglement and purity Tr( ρ 2 AB ) : 2 2 W. J. Munro et al. , Phys. Rev. A 64, 030302(R) (2001). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 5 / 22

  13. Maximally entangled mixed states (MEMS) Relation between entanglement and purity Tr( ρ 2 AB ) : 2 2 W. J. Munro et al. , Phys. Rev. A 64, 030302(R) (2001). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 5 / 22

  14. Maximally entangled mixed states (MEMS) Relation between entanglement and purity Tr( ρ 2 AB ) : 2 Werner 2 W. J. Munro et al. , Phys. Rev. A 64, 030302(R) (2001). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 5 / 22

  15. Maximally entangled mixed states (MEMS) Relation between entanglement and purity Tr( ρ 2 AB ) : 2 Werner MEMS : states ρ ∗ such that any measure E ( ρ ∗ ) ≥ E ( Uρ ∗ U † ) , ∀ U . 2 W. J. Munro et al. , Phys. Rev. A 64, 030302(R) (2001). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 5 / 22

  16. Maximally entangled mixed states (MEMS) Two qubit MEMS found solving the spectral constrained analogue 3 3 F. Verstraete et al. , Phys. Rev. A 64, 012316 (2001). 4 T. C. Wei et al. , Phys. Rev. A 67, 022110 (2003). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 6 / 22

  17. Maximally entangled mixed states (MEMS) Two qubit MEMS found solving the spectral constrained analogue 3 Theorem (Verstraete, 2001) Given a state ρ = ΦΛΦ † , the unitary maximising EOF and negativity is:  0 0 0 1  √ √ 1 / 2 0 1 / 2 0 √ √  D φ Φ †   U = ( U 1 ⊗ U 2 ) (4)   1 / 2 0 − 1 / 2 0  0 1 0 0 MEMS depend on the entanglement measure considered 4 3 F. Verstraete et al. , Phys. Rev. A 64, 012316 (2001). 4 T. C. Wei et al. , Phys. Rev. A 67, 022110 (2003). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 6 / 22

  18. Maximally entangled mixed states (MEMS) Two qubit MEMS found solving the spectral constrained analogue 3 Theorem (Verstraete, 2001) Given a state ρ = ΦΛΦ † , the unitary maximising EOF and negativity is:  0 0 0 1  √ √ 1 / 2 0 1 / 2 0 √ √  D φ Φ †   U = ( U 1 ⊗ U 2 ) (4)   1 / 2 0 − 1 / 2 0  0 1 0 0 MEMS depend on the entanglement measure considered 4 � 2 For negativity: ρ MEMS = 1 − r 4 I 2 ⊗ I 2 + rP + P + 2 = 1 2 , i,j =1 | ii �� jj | 2 3 F. Verstraete et al. , Phys. Rev. A 64, 012316 (2001). 4 T. C. Wei et al. , Phys. Rev. A 67, 022110 (2003). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 6 / 22

  19. Fixing marginals: reconstructing states from local info Entanglement characterization: 5 5 G. Adesso et al. , Phys. Rev. A 68, 062318 (2003) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 7 / 22

  20. Fixing marginals: reconstructing states from local info Entanglement characterization: 5 → Maximally entangled marginally mixed states ( MEMMS ), i.e. MEMS with respect to local purities 5 G. Adesso et al. , Phys. Rev. A 68, 062318 (2003) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 7 / 22

  21. Fixing marginals: reconstructing states from local info Entanglement characterization: 5 → Maximally entangled marginally mixed states ( MEMMS ), i.e. MEMS with respect to local purities What is the upper bound E max ( ρ ) on bipartite entanglement when only marginals are known? MEMS with respect to fixed marginals Given ρ A , ρ B , find E max ( ρ ) : Tr B ( ρ ) = ρ A , Tr A ( ρ ) = ρ B 5 G. Adesso et al. , Phys. Rev. A 68, 062318 (2003) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 7 / 22

  22. Fixing marginals: reconstructing states from local info Entanglement characterization: 5 → Maximally entangled marginally mixed states ( MEMMS ), i.e. MEMS with respect to local purities What is the upper bound E max ( ρ ) on bipartite entanglement when only marginals are known? MEMS with respect to fixed marginals Given ρ A , ρ B , find E max ( ρ ) : Tr B ( ρ ) = ρ A , Tr A ( ρ ) = ρ B Characterizing states from local measurements : Quantum marginal constraints (Klyachko), Quantum tomography etc. 5 G. Adesso et al. , Phys. Rev. A 68, 062318 (2003) 17 th June 2019 Giuseppe Baio 51 SMP Toruń 7 / 22

  23. What is known: Two qubits Let ρ A = diag { 1 − λ A , λ A } , ρ B = diag { 1 − λ B , λ B } be two qubit states. 0 , 1 � � λ A , λ B ∈ , λ A ≥ λ B 2 17 th June 2019 Giuseppe Baio 51 SMP Toruń 8 / 22

  24. What is known: Two qubits Let ρ A = diag { 1 − λ A , λ A } , ρ B = diag { 1 − λ B , λ B } be two qubit states. 0 , 1 � � λ A , λ B ∈ , λ A ≥ λ B 2 C ( ρ A , ρ B ) set of two-qubit states with fixed marginals:  ǫ ∆ 12 ∆ 13 ∆ 14  − ǫ ∆ 23 − ∆ 13   ρ AB = ρ A ⊗ ρ B + (5)   − ǫ − ∆ 12   (c.c) ǫ 17 th June 2019 Giuseppe Baio 51 SMP Toruń 8 / 22

  25. What is known: Two qubits Let ρ A = diag { 1 − λ A , λ A } , ρ B = diag { 1 − λ B , λ B } be two qubit states. 0 , 1 � � λ A , λ B ∈ , λ A ≥ λ B 2 C ( ρ A , ρ B ) set of two-qubit states with fixed marginals 6 :   ǫ · · ∆ 14 − ǫ ∆ 23 ·   ρ AB = ρ A ⊗ ρ B + (5)   − ǫ ·   (c.c) ǫ 6 F. Verstraete et al. , Phys. Rev. A 64, 012316 (2001). 17 th June 2019 Giuseppe Baio 51 SMP Toruń 8 / 22

  26. What is known: Two qubits Let ρ A = diag { 1 − λ A , λ A } , ρ B = diag { 1 − λ B , λ B } be two qubit states. � 0 , 1 � λ A , λ B ∈ , λ A ≥ λ B 2 C ( ρ A , ρ B ) set of two-qubit states with fixed marginals: �  1 − λ A · · (1 − λ A ) λ B  · 0 · ·   ρ AB = ˜ (5)   · · λ A − λ B ·   � (1 − λ A ) λ B · · λ B � � ( λ A − λ B ) 2 + 4 λ B (1 − λ A ) ρ AB ) = 1 � Maximal neg: N (˜ λ A − λ B − 2 17 th June 2019 Giuseppe Baio 51 SMP Toruń 8 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend