mathematical problems in multivariate public key
play

Mathematical Problems in Multivariate Public Key Cryptography - PowerPoint PPT Presentation

Mathematical Problems in Multivariate Public Key Cryptography Timothy Hodges University of Cincinnati January 15, 2015 Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 1 / 28 Overview Multivariate


  1. Mathematical Problems in Multivariate Public Key Cryptography Timothy Hodges University of Cincinnati January 15, 2015 Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 1 / 28

  2. Overview Multivariate Public Key Cryptosystems 1 Solving Systems of Polynomial Equations 2 First Fall Degree and HFE-systems 3 Semi-regular systems 4 Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 2 / 28

  3. Outline Multivariate Public Key Cryptosystems 1 Solving Systems of Polynomial Equations 2 First Fall Degree and HFE-systems 3 Semi-regular systems 4 Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 3 / 28

  4. Multivariate Public Key Cryptosystems F a finite field with | F | = q { p 1 ,..., p n } F n → F m − − − − − − p i ( x 1 , . . . , x n ) ∈ F [ x 1 , . . . , x n ] / � x q 1 − x 1 , . . . , x q n − x n � = Fun( F n , F ) Solving p 1 ( x 1 , . . . , x n ) = y 1 . . . . . . p m ( x 1 , . . . , x n ) = y m is a hard problem. Problem Design a trapdoor that retains this level of security. Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 4 / 28

  5. Multivariate Public Key Cryptosystems F a finite field with | F | = q { p 1 ,..., p n } F n → F m − − − − − − p i ( x 1 , . . . , x n ) ∈ F [ x 1 , . . . , x n ] / � x q 1 − x 1 , . . . , x q n − x n � = Fun( F n , F ) Solving p 1 ( x 1 , . . . , x n ) = y 1 . . . . . . p m ( x 1 , . . . , x n ) = y m is a hard problem. Problem Design a trapdoor that retains this level of security. Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 4 / 28

  6. Multivariate Public Key Cryptosystems F a finite field with | F | = q { p 1 ,..., p n } F n → F m − − − − − − p i ( x 1 , . . . , x n ) ∈ F [ x 1 , . . . , x n ] / � x q 1 − x 1 , . . . , x q n − x n � = Fun( F n , F ) Solving p 1 ( x 1 , . . . , x n ) = y 1 . . . . . . p m ( x 1 , . . . , x n ) = y m is a hard problem. Problem Design a trapdoor that retains this level of security. Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 4 / 28

  7. Multivariate Public Key Cryptosystems F a finite field with | F | = q { p 1 ,..., p n } F n → F m − − − − − − p i ( x 1 , . . . , x n ) ∈ F [ x 1 , . . . , x n ] / � x q 1 − x 1 , . . . , x q n − x n � = Fun( F n , F ) Solving p 1 ( x 1 , . . . , x n ) = y 1 . . . . . . p m ( x 1 , . . . , x n ) = y m is a hard problem. Problem Design a trapdoor that retains this level of security. Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 4 / 28

  8. Multivariate Public Key Cryptosystems F a finite field with | F | = q { p 1 ,..., p n } F n → F m − − − − − − p i ( x 1 , . . . , x n ) ∈ F [ x 1 , . . . , x n ] / � x q 1 − x 1 , . . . , x q n − x n � = Fun( F n , F ) Solving p 1 ( x 1 , . . . , x n ) = y 1 . . . . . . p m ( x 1 , . . . , x n ) = y m is a hard problem. Problem Design a trapdoor that retains this level of security. Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 4 / 28

  9. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  10. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  11. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  12. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  13. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  14. Hidden Field Systems: Matsumoto-Imai Identify (secretly) F n with an extension field K , where dim F K = n . So | K | = q n The map P : K → K , P ( X ) = X θ is invertible with inverse P − 1 ( X ) = X s if gcd( θ, q n − 1) = 1, For all 0 � = α ∈ K , α q n − 1 = 1 by Lagrange’s Theorem. Since gcd( θ, q n − 1) = 1, then there exist s , t ∈ Z such that θ s + ( q n − 1) t = 1 so ( α θ ) s = α − ( q n − 1) t +1 = α − ( q n − 1) t α = α Take q = 2 t and θ = 1 + q s , P ( X ) = X . X q s is quadratic P − − − − − → K K Private Key x ? σ ? τ ? ? y { p 1 ,..., p n } F n → F n − − − − − − Public Key σ, τ invertible affine linear maps Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28

  15. Patarin’s HFE System P ( X ) is P ( X ) K − − − − − → K x ? of low total degree, D (efficient σ ? τ ? ? y decryption). { p 1 ,..., p n } F n → F n − − − − − − quadratic over F so that p i ( x 1 , . . . , x n ) are quadratic (efficient encryption) a ij X q i + q j + b i X q i + c X X P ( X ) = q i + q j ≤ D q i ≤ D where a ij , b i , c ∈ K . Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 6 / 28

  16. Patarin’s HFE System P ( X ) is P ( X ) K − − − − − → K x ? of low total degree, D (efficient σ ? τ ? ? y decryption). { p 1 ,..., p n } F n → F n − − − − − − quadratic over F so that p i ( x 1 , . . . , x n ) are quadratic (efficient encryption) a ij X q i + q j + b i X q i + c X X P ( X ) = q i + q j ≤ D q i ≤ D where a ij , b i , c ∈ K . Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 6 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend