mathematical model of talking bacteria
play

Mathematical model of talking bacteria Sarangam Majumdar - PowerPoint PPT Presentation

Mathematical model of talking bacteria Sarangam Majumdar Dipartimento di Ingegneria e Scienze dellInformazione e Matematica Universita degli Studi dellAquila Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dellInformazione e


  1. Mathematical model of talking bacteria Sarangam Majumdar Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 1 / 36

  2. Overview Quorum sensing Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  3. Overview Quorum sensing Mathematical Model Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  4. Overview Quorum sensing Mathematical Model Discussion Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  5. Overview Quorum sensing Mathematical Model Discussion Observation Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  6. Overview Quorum sensing Mathematical Model Discussion Observation Forced Burger equation, Kawak transformation and Reaction diffusion system Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  7. Overview Quorum sensing Mathematical Model Discussion Observation Forced Burger equation, Kawak transformation and Reaction diffusion system pattern formation Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  8. Overview Quorum sensing Mathematical Model Discussion Observation Forced Burger equation, Kawak transformation and Reaction diffusion system pattern formation Quantum Perspective Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 2 / 36

  9. Quorum sensing Quorum Sensing Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 3 / 36

  10. Quorum sensing Quorum Sensing Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 4 / 36

  11. Quorum sensing Batch Culture of Quorum Sensing Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 5 / 36

  12. Quorum sensing Quorum Sensing A co-ordinated change in bacterial behavior depending on the concentration of the autoinducers (the signalling molecules) for facilitating bacterial adaptation to environmental stress. Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 6 / 36

  13. Quorum sensing ( Quorum sensing molecules (QSM) used by different kind of bacteria ) Signal Organisms C4-HSL (an AHL) Aeromonas hydrophila , Pseudomonas aeruginosa C6-HSL Erwinia carotovora , Pseudomonas aureofaciens , Yersinia enterocolitica 3-Oxo-C6-HSL E. carotovora , Vibrio fischeri , Y. enterocolitica 3-Oxo-C8-HSL Agrobacterium Tumefaciens Autoinducing Peptide (AIP)-I Straphylococcus aureus Group I strains AI-2 (S-THMF-borate) Vibrio harveyi Farnesol Candida albicans Structure of AI-2 (S-THMF-borate) Structure of C4-HSL Structure of C6-HSL Structure of 3-Oxo-C6-HSL Structure of Autoinducing Peptide (AIP)-I Structure of Farnesol Structure of 3-Oxo-C8-HSL Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 7 / 36

  14. Mathematical Model The Gelf’ and triple Let V and H be two Hilbert spaces on C , with V ⊂ H , V dense in H , the canonical injection of V into H being continuous. We denote ( ., . ) the inner product in H , | . | its associated norm and || . || the norm in V . By Riesz Theorem, to each bounded antilinear form on H we can associate a unique element u belong to H such that this form a map v �→ ( u , v ) from H to C reciprocally,an element u ∈ H defines as a bounded antilinear map on H . Thus ′ is identified to the subspace of V ′ . The space H ≡ H ′ , the identify H to its antidual H antidual space to V . We get ′ ⊂ V ′ V ⊂ H ≡ H ′ and we can easily use the Moreover, H is dense and continuously embedded into V ′ and V . same notation for the inner product in H and for the duality between V Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 8 / 36

  15. Mathematical Model Resolvent Estimates Theorem Let A be an m α - accretive operator. Then ∀ z / ∈ S α we have the estimates 1 || ( zI − A ) − 1 || H → H ≤ d ( z , S α ) | z | || A ( zI − A ) − 1 || H → H ≤ d ( z , S α ) Moreover, the maps z → ( zI − A ) − 1 from S c α to L ( H , H ) and L ( H , D ( A )) are continuous and infinitely differentiable (in the sense of C ). Conversely if we assume that ∀ z / ∈ S α , zI − A is an isomorphism from D ( A ) to H and that, ∀ z � = 0 with | argz | = α + π 2 , || ( zI − A ) − 1 || H → H ≤ 1 | z | then A is m α - accretive. Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 9 / 36

  16. Mathematical Model Functions of operators : Analytic semigroups A → m α - accretive operator on H ; r → a rational fraction bounded on S α such that r j � ∈ S α , m j ∈ ℵ ∗ r ( z ) = r ( ∞ ) + with α j / ( α j − z mj ) j Defining operator r ( A ) by � r j (( α j I − A ) − 1 ) mj r ( A ) = r ( ∞ ) I + j Theorem Let α ∈ [ 0 , π 2 ] . There exists a constant 1 ≤ C α ≤ 2 + 2 √ such that for all m α - 3 accretive operator A and for all rational fraction r bounded on the sector S α , we have || r ( A ) || H → H ≤ C α sup | r ( z ) | z ∈ S α Moreover, when α = π 2 , we have C π 2 = 1. Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 10 / 36

  17. Mathematical Model Corollary When the function f is a uniform limit of rational fractions r n on S α , the relation f ( A ) = lim n →∞ r n ( A ) defines an operator f ( A ) ∈ L ( H , H ) and it follows that || f ( A ) || H → H ≤ C α sup z ∈ S α | f ( z ) | Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 11 / 36

  18. Mathematical Model Corollary When the function f is a uniform limit of rational fractions r n on S α , the relation f ( A ) = lim n →∞ r n ( A ) defines an operator f ( A ) ∈ L ( H , H ) and it follows that || f ( A ) || H → H ≤ C α sup z ∈ S α | f ( z ) | Lemma For all α ∈ [ 0 , π 2 ) we have 1 6 | e − z − ( 1 + z / n ) n | ≤ ∀ n ≥ 1 , sup n cos 2 α z ∈ S α Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 11 / 36

  19. Mathematical Model Corollary When the function f is a uniform limit of rational fractions r n on S α , the relation f ( A ) = lim n →∞ r n ( A ) defines an operator f ( A ) ∈ L ( H , H ) and it follows that || f ( A ) || H → H ≤ C α sup z ∈ S α | f ( z ) | Lemma For all α ∈ [ 0 , π 2 ) we have 1 6 | e − z − ( 1 + z / n ) n | ≤ ∀ n ≥ 1 , sup n cos 2 α z ∈ S α Corollary Let α and β satisfy 0 ≤ α < α + β < π 2 . Then ∀ t ∈ S β the function E ( t ) = exp ( − tA ) is well defined. Moreover E ( t ) ∈ L ( H , H ) and || E ( t ) || H → H ≤ 1. RemarkThis corollary is valid in particular with t = 0 and we get E ( 0 ) = I . Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 11 / 36

  20. Mathematical Model Theorem π Let α ∈ [ 0 , ) . The family of operators E ( t ) , t ≥ 0 satisfies the following properties 2 ∀ t , s ≥ 0 , E ( t + s ) = E ( t ) E ( s ) ∀ t ≥ 0 , || E ( t ) || H → H ≤ 1 ∀ u 0 ∈ H , the map t �→ E ( t ) u 0 is continuous from ℜ + to H . We say that this family is a semigroup of contractions stronly continuous on H and that the operator A is the infinitesimal generator of this semigroup. Remark: The theorem is still valid for α = π 2 . It is also valid ∀ t , s ∈ S π 2 − α Sarangam Majumdar (Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universita’ degli Studi dell’Aquila) Mathematical model of talking bacteria 12 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend