math 211 math 211
play

Math 211 Math 211 Lecture #33 Harmonic Motion Inhomogeneous - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #33 Harmonic Motion Inhomogeneous Equations November 13, 2002 2 Harmonic Motion Harmonic Motion Spring: y + m y + k m y = 1 m F ( t ) . Circuit: I + R L I + LC I = 1 1 L E (


  1. 9 Underdamped Case Underdamped Case • c < ω 0 • Two complex roots λ and λ , where λ = − c + iω and 0 − c 2 . � ω 2 ω = • General solution x ( t ) = e − ct [ C 1 cos ωt + C 2 sin ωt ]

  2. 9 Underdamped Case Underdamped Case • c < ω 0 • Two complex roots λ and λ , where λ = − c + iω and 0 − c 2 . � ω 2 ω = • General solution x ( t ) = e − ct [ C 1 cos ωt + C 2 sin ωt ] . = Ae − ct cos( ωt − φ )

  3. 10 Overdamped Case Overdamped Case Return

  4. 10 Overdamped Case Overdamped Case • c > ω 0 , Return

  5. 10 Overdamped Case Overdamped Case • c > ω 0 , so two real roots Return

  6. 10 Overdamped Case Overdamped Case • c > ω 0 , so two real roots � c 2 − ω 2 λ 1 = − c − 0 � c 2 − ω 2 λ 2 = − c + 0 . Return

  7. 10 Overdamped Case Overdamped Case • c > ω 0 , so two real roots � c 2 − ω 2 λ 1 = − c − 0 � c 2 − ω 2 λ 2 = − c + 0 . • λ 1 < λ 2 < 0 . Return

  8. 10 Overdamped Case Overdamped Case • c > ω 0 , so two real roots � c 2 − ω 2 λ 1 = − c − 0 � c 2 − ω 2 λ 2 = − c + 0 . • λ 1 < λ 2 < 0 . • General solution x ( t ) = C 1 e λ 1 t + C 2 e λ 2 t . Return

  9. 11 Critically Damped Case Critically Damped Case Return

  10. 11 Critically Damped Case Critically Damped Case • c = ω 0 Return

  11. 11 Critically Damped Case Critically Damped Case • c = ω 0 • One negative real root λ = − c with multiplicity 2. Return

  12. 11 Critically Damped Case Critically Damped Case • c = ω 0 • One negative real root λ = − c with multiplicity 2. • General solution x ( t ) = e − ct [ C 1 + C 2 t ] . Return

  13. 12 Inhomogeneous Equations Inhomogeneous Equations y ′′ + py ′ + qy = f ( t ) Return

  14. 12 Inhomogeneous Equations Inhomogeneous Equations y ′′ + py ′ + qy = f ( t ) • The corresponding homogeneous equation is y ′′ + py ′ + qy = 0 Return

  15. 12 Inhomogeneous Equations Inhomogeneous Equations y ′′ + py ′ + qy = f ( t ) • The corresponding homogeneous equation is y ′′ + py ′ + qy = 0 � We know how to find a fundamental set of solutions y 1 and y 2 . Return

  16. 12 Inhomogeneous Equations Inhomogeneous Equations y ′′ + py ′ + qy = f ( t ) • The corresponding homogeneous equation is y ′′ + py ′ + qy = 0 � We know how to find a fundamental set of solutions y 1 and y 2 . � The general solution of the homogeneous equation is y h ( t ) = C 1 y 1 ( t ) + C 2 y 2 ( t ) . Return

  17. 13 Theorem: Assume Return Homogeneous equation

  18. 13 Theorem: Assume • y p ( t ) is a particular solution to the inhomogeneous equation y ′′ + py ′ + qy = f ( t ); Return Homogeneous equation

  19. 13 Theorem: Assume • y p ( t ) is a particular solution to the inhomogeneous equation y ′′ + py ′ + qy = f ( t ); • y 1 ( t ) & y 2 ( t ) is a fundamental set of solutions to the homogeneous equation y ′′ + py ′ + qy = 0 . Return Homogeneous equation

  20. 13 Theorem: Assume • y p ( t ) is a particular solution to the inhomogeneous equation y ′′ + py ′ + qy = f ( t ); • y 1 ( t ) & y 2 ( t ) is a fundamental set of solutions to the homogeneous equation y ′′ + py ′ + qy = 0 . Then the general solution to the inhomogeneous equation is y ( t ) = y p ( t ) + C 1 y 1 ( t ) + C 2 y 2 ( t ) . Return Homogeneous equation

  21. 14 Method of Undetermined Coefficients Method of Undetermined Coefficients y ′′ + py ′ + qy = f ( t ) Return

  22. 14 Method of Undetermined Coefficients Method of Undetermined Coefficients y ′′ + py ′ + qy = f ( t ) • If the forcing term f ( t ) has a form which is replicated under differentiation, then look for a particular solution of the same general form as the forcing term. Return

  23. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at Return

  24. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t Return

  25. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. Return

  26. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. � Particular solution: y p ( t ) = 2 e − 3 t . Return

  27. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. � Particular solution: y p ( t ) = 2 e − 3 t . • Homogeneous equation: y ′′ + 3 y ′ + 2 y = 0 . Return

  28. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. � Particular solution: y p ( t ) = 2 e − 3 t . • Homogeneous equation: y ′′ + 3 y ′ + 2 y = 0 . � Fundamental set of solutions: e − 2 t & e − t . Return

  29. 15 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce at • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. � Particular solution: y p ( t ) = 2 e − 3 t . • Homogeneous equation: y ′′ + 3 y ′ + 2 y = 0 . � Fundamental set of solutions: e − 2 t & e − t . • General solution to the inhomogeneous equation: y ( t ) = 2 e − 3 t + C 1 e − t + C 2 e − 2 t . Return

  30. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt Return

  31. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t Return

  32. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t Return

  33. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . Return

  34. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . • Homogeneous equation: y ′′ + 4 y ′ + 5 y = 0 Return

  35. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . • Homogeneous equation: y ′′ + 4 y ′ + 5 y = 0 � Fund. set of sol’ns: e − 2 t cos t & e − 2 t sin t . Return

  36. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . • Homogeneous equation: y ′′ + 4 y ′ + 5 y = 0 � Fund. set of sol’ns: e − 2 t cos t & e − 2 t sin t . • General solution to the inhomogeneous equation: Return

  37. 16 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . • Homogeneous equation: y ′′ + 4 y ′ + 5 y = 0 � Fund. set of sol’ns: e − 2 t cos t & e − 2 t sin t . • General solution to the inhomogeneous equation: y ( t ) = 28 cos 2 t + 29 sin 2 t + e − 2 t [ C 1 cos t + C 2 sin t ] . 65 Return

  38. 17 Complex Method Complex Method x ′′ + px ′ + qx = A cos ωt or y ′′ + py ′ + qy = A sin ωt. Return

  39. 17 Complex Method Complex Method x ′′ + px ′ + qx = A cos ωt or y ′′ + py ′ + qy = A sin ωt. • Solve z ′′ + pz ′ + qz = Ae iωt . Return

  40. 17 Complex Method Complex Method x ′′ + px ′ + qx = A cos ωt or y ′′ + py ′ + qy = A sin ωt. • Solve z ′′ + pz ′ + qz = Ae iωt . � Try z ( t ) = ae iωt . Return

  41. 17 Complex Method Complex Method x ′′ + px ′ + qx = A cos ωt or y ′′ + py ′ + qy = A sin ωt. • Solve z ′′ + pz ′ + qz = Ae iωt . � Try z ( t ) = ae iωt . • x p ( t ) = Re( z ( t )) and y p ( t ) = Im( z ( t )) . Return

  42. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t Return

  43. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . Return

  44. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . � Try z ( t ) = ae 2 it . Return

  45. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . � Try z ( t ) = ae 2 it . � Particular solution: z ( t ) = (4 − 32 i ) e 2 it / 65 . Return

  46. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . � Try z ( t ) = ae 2 it . � Particular solution: z ( t ) = (4 − 32 i ) e 2 it / 65 . • Particular solution to the real equation: x p ( t ) = Re( z ( t )) Return

  47. 18 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . � Try z ( t ) = ae 2 it . � Particular solution: z ( t ) = (4 − 32 i ) e 2 it / 65 . • Particular solution to the real equation: x p ( t ) = Re( z ( t )) = [4 cos 2 t + 32 sin 2 t ] / 65 . Return

  48. 19 Polynomial Forcing Term Polynomial Forcing Term y ′′ + py ′ + qy = P ( t ) Return

  49. 19 Polynomial Forcing Term Polynomial Forcing Term y ′′ + py ′ + qy = P ( t ) • Example: y ′′ − 3 y ′ + 2 y = 1 − 4 t. Return

  50. 19 Polynomial Forcing Term Polynomial Forcing Term y ′′ + py ′ + qy = P ( t ) • Example: y ′′ − 3 y ′ + 2 y = 1 − 4 t. � Try y ( t ) = a + bt. Return

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend