matching deformable objects in clutter
play

Matching Deformable Objects in Clutter Emanuele Rodol` a USI - PowerPoint PPT Presentation

Matching Deformable Objects in Clutter Emanuele Rodol` a USI Lugano Joint work with L. Cosmo A. Torsello J. Masci M.M. Bronstein ICSEE 2016, Eilat, 18 November 2016 1/35 Shape correspondence problem Isometric 2/35 Shape correspondence


  1. Matching Deformable Objects in Clutter Emanuele Rodol` a USI Lugano Joint work with L. Cosmo A. Torsello J. Masci M.M. Bronstein ICSEE 2016, Eilat, 18 November 2016 1/35

  2. Shape correspondence problem Isometric 2/35

  3. Shape correspondence problem Isometric Partial 2/35

  4. Shape correspondence problem Isometric Partial Different representation 2/35

  5. Point-wise maps t y j x i X Y Point-wise maps t : X → Y 3/35

  6. Functional maps g f F ( X ) F ( Y ) T Functional maps T : F ( X ) → F ( Y ) Ovsjanikov et al., 2012 3/35

  7. Functional correspondence f ↓ T ↓ g Ovsjanikov et al., 2012 4/35

  8. Functional correspondence f ≈ a 1 + a 2 + · · · + a k ↓ T ↓ g ≈ b 1 + b 2 + · · · + b k Ovsjanikov et al., 2012 4/35

  9. Functional correspondence f ≈ a 1 + a 2 + · · · + a k ↓ ↓ T C Translates Fourier coefficients from Φ to Ψ ↓ ↓ g ≈ b 1 + b 2 + · · · + b k where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al., 2012 4/35

  10. Functional correspondence f ≈ a 1 + a 2 + · · · + a k ↓ ↓ Φ ⊤ T ≈ Ψ k C Translates Fourier coefficients from Φ to Ψ k ↓ ↓ g ≈ b 1 + b 2 + · · · + b k Ψ ⊤ k g = CΦ ⊤ k f where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al., 2012 4/35

  11. Laplacian eigenbases The Laplacian is invariant to isometries φ 1 φ 2 φ 3 φ 4 ψ 1 ψ 2 ψ 3 ψ 4 5/35

  12. Functional correspondence in Laplacian eigenbases C = Ψ ⊤ k TΦ k ⇒ c ij = � ψ i , Tϕ j � For isometric simple spectrum shapes, C is diagonal since ψ i = ± T φ i 6/35

  13. Part-to-full correspondence Full model Partial query 7/35

  14. Partial Laplacian eigenvectors ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 8/35

  15. Partial Laplacian eigenvectors ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 8/35

  16. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 9/35

  17. Partial Laplacian eigenvectors Functional correspondence matrix C Diagonal angle ≈ area ratio of surfaces Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 10/35

  18. Our setting: Objects in clutter Full model Cluttered partial view 11/35

  19. Functional correspondence with clutter C M S 1 C ⊤ C 12/35

  20. Functional correspondence with clutter C M S 1 S 2 C ⊤ C 12/35

  21. Functional correspondence with clutter C M S 1 S 2 C ⊤ C S 3 12/35

  22. Functional correspondence with clutter C M S 1 S 2 C ⊤ C S 3 S 4 12/35

  23. Laplacian eigenvectors with clutter � Tϕ i , ψ j � S ϕ 5 ϕ 6 ϕ 8 ψ 23 ψ 25 ψ 31 13/35

  24. Functional object-in-clutter T diag( u ) f = diag( v ) g u : M → [0 , 1] v : S → [0 , 1] 14/35

  25. Functional object-in-clutter T diag( u ) f = diag( v ) g T − → 14/35

  26. Functional object-in-clutter C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + � CΦ ⊤ u − Ψ ⊤ v � 2 min 2 + ρ corr ( C , θ ) + ρ part ( u, v ) 15/35

  27. Functional object-in-clutter C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + � CΦ ⊤ u − Ψ ⊤ v � 2 min 2 + ρ corr ( C , θ ) + ρ part ( u, v ) Part regularization �� � � 2 �� � � 2 ρ part ( u, v ) = µ 1 udx − − µ 2 udx + vdx vdx M S M S �� � � + µ 3 �∇ M u � dx + �∇ S v � dx M S 15/35

  28. Functional object-in-clutter C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + � CΦ ⊤ u − Ψ ⊤ v � 2 min 2 + ρ corr ( C , θ ) + ρ part ( u, v ) Part regularization �� � � 2 �� � � 2 ρ part ( u, v ) = µ 1 udx − − µ 2 udx + vdx vdx M S M S � �� � � �� � area preservation part size �� � � + µ 3 �∇ M u � dx + �∇ S v � dx M S � �� � Mumford − Shah 15/35

  29. Functional object-in-clutter C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + � CΦ ⊤ u − Ψ ⊤ v � 2 min 2 + ρ corr ( C , θ ) + ρ part ( u, v ) Correspondence regularization � � ρ corr ( C , θ ) = µ 4 � C ◦ W ( θ ) � 2 ( C ⊤ C ) 2 | C ⊤ C | ii F + µ 5 ij + µ 6 i � = j i 1 θ W ( θ ) = 0 16/35

  30. Functional object-in-clutter C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + � CΦ ⊤ u − Ψ ⊤ v � 2 min 2 + ρ corr ( C , θ ) + ρ part ( u, v ) Correspondence regularization � � ρ corr ( C , θ ) = µ 4 � C ◦ W ( θ ) � 2 ( C ⊤ C ) 2 | C ⊤ C | ii + µ 5 + µ 6 F ij � �� � i � = j i slant � �� � � �� � sparsity ≈ orthogonality 1 θ W ( θ ) = 0 16/35

  31. Learning descriptors C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + · · · min For the data term we use dense descriptor fields. 17/35

  32. Learning descriptors C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + · · · min For the data term we use dense descriptor fields. Existing isometry-invariant descriptors (HKS, WKS) are affected by clutter and boundary effects Sun et al. 2009; Aubry et al. 2011 17/35

  33. Learning descriptors C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + · · · min For the data term we use dense descriptor fields. Existing isometry-invariant descriptors (HKS, WKS) are affected by clutter and boundary effects Local descriptors (FPFH, SHOT) are not isometry invariant and sensitive to sampling Sun et al. 2009; Aubry et al. 2011; Rusu et al. 2009; Tombari et al. 2010 17/35

  34. Learning descriptors C ,θ,u,v � CΦ ⊤ diag( u ) F − Ψ ⊤ diag( v ) G � 2 , 1 + · · · min For the data term we use dense descriptor fields. Existing isometry-invariant descriptors (HKS, WKS) are affected by clutter and boundary effects Local descriptors (FPFH, SHOT) are not isometry invariant and sensitive to sampling Our solution: Perform metric learning upon 544-dim SHOT to derive 32-dim descriptors that are robust to clutter, missing parts, and near-isometries Sun et al. 2009; Aubry et al. 2011; Rusu et al. 2009; Tombari et al. 2010; Hadsell et al. 2006; Masci, Boscaini, Bronstein, Vandergheynst 2015 17/35

  35. Performance of learned descriptors ROC CMC 1 80 0.8 Ours 60 True Positive Rate SHOT HKS Hit rate (%) 0.6 WKS 40 0.4 Ours 20 SHOT 0.2 HKS WKS 0 0 0 2 10 3 4 10 3 6 10 3 8 10 3 10 4 0 0.2 0.4 0.6 0.8 1 . . . . False Positive Rate Best matches Tombari et al. 2010 (SHOT); Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS) 18/35

  36. Comparisons 100 80 % Correspondences Ours 60 CPD GTM PFM 40 FM 20 0 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error Methods: Myronenko et al. 2010 (CPD); Rodol` a, Bronstein, Albarelli, Bergamasco, Torsello 2013 (GTM); Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 (PFM); Ovsjanikov et al. 2012 (FM) 19/35

  37. Examples with clutter 20/35

  38. Examples with clutter 20/35

  39. Examples with clutter 20/35

  40. Failure case 21/35

  41. Conclusions Deformable object-in-clutter has been much less investigated than its rigid counterpart, and there is a lack of data and benchmarks. 22/35

  42. Conclusions Deformable object-in-clutter has been much less investigated than its rigid counterpart, and there is a lack of data and benchmarks. We presented a spectral approach that works remarkably well despite the realistic setting. 22/35

  43. Conclusions Deformable object-in-clutter has been much less investigated than its rigid counterpart, and there is a lack of data and benchmarks. We presented a spectral approach that works remarkably well despite the realistic setting. Existing descriptors do not behave well in this setting; we need new descriptors! 22/35

  44. Conclusions Deformable object-in-clutter has been much less investigated than its rigid counterpart, and there is a lack of data and benchmarks. We presented a spectral approach that works remarkably well despite the realistic setting. Existing descriptors do not behave well in this setting; we need new descriptors! Thank you! 22/35

  45. 23/35

  46. Examples (no clutter) 24/35

  47. Perturbation analysis: intuition ∆ X φ 1 φ 2 φ 3 X ¯ X ∆ X φ 1 φ 2 φ 3 ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 X Ignoring boundary interaction: disjoint parts (block-diagonal matrix) Eigenvectors = Mixture of eigenvectors of the parts 25/35

  48. Perturbation analysis: eigenvalues 8 . 00 · 10 − 2 X 6 . 00 4 . 00 r k Y 2 . 00 0 . 00 10 20 30 40 50 eigenvalue number k ≈ area( X ) Slope r area( Y ) (depends on the area of the cut) Consistent with Weyl’s law for 2-manifolds Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 26/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend