mass ejection from neutron star mergers in numerical
play

Mass ejection from neutron-star mergers in numerical relativity - PowerPoint PPT Presentation

Mass ejection from neutron-star mergers in numerical relativity Masaru Shibata 1 Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Gravitational Physics at Potsdam Outline I.


  1. Mass ejection � from neutron-star mergers � in numerical relativity Masaru Shibata 1 Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U. 2 Max Planck Institute for Gravitational Physics at Potsdam

  2. Outline I. Brief introduction II. Scenarios for NS mergers (NS-NS & BH-NS) III. Dynamical mass ejection IV. MHD/viscous ejection from merger remnants V. Summary

  3. I Introduction: Why mass ejection from NS binaries is important ? 1. Electromagnetic counterparts of NS merger: Key for confirming gravitational-wave detection (talks by Tanaka, Metzger, and others this week) 2. Possible site of r-process nucleosynthesis (talk by Lattimer) Jet − ISM Shock (Afterglow) Optical (hours − days) Radio (weeks − years) Ejecta − ISM Shock Radio (years) θ obs GRB (t ~ 0.1 − 1 s) Kilonova Optical (t ~ 1 day) θ j Merger Ejecta Tidal Tail & Disk Wind v ~ 0.1 − 0.3 c BH Metzger & Berger 2012

  4. In this talk, I focus on • Ejecta mass M eject • Electron fraction Y e (=[p]/[nucleon]) Abundance pattern Light curve 20 3rd peak 2nd peak 1st peak i band 21 200 Mpc Observed magnitude 22 1m 23 24 4m 25 8m 26 27 0 5 10 15 20 Days after the merger Korobkin et al. 2012 Tanaka & Hotokezaka 2013

  5. II A Typical scenarios for NS-NS merger • Constraints from radio-telescope observations : 1. Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013) à Constraint to equation of state (EOS) for NS 2. Typical total mass of compact binary neutron stars à ~ 2.73±0.15 solar mass (by Pulsar timing obs.)

  6. Compact NS-NS system in our galaxy Orbital period Eccentricity Each mass lifetime PSR P (day) e M ( M sun ) M 1 M 2 T GW 1. B1913+16 0.323 0.617 2.828 1.441 1.387 3.0 2. B1534+12 0.421 0.274 2.678 1.333 1.345 27 3. B2127+11C 0.335 0.681 2.71 1.35 1.36 2.2 4. J0737-3039 0.102 0.088 2.58 1.34 1.25 0.86 5. J1756-2251 0.32 0.18 2.57 1.34 1.23 17 6. J1906+746 0.166 0.085 2.61 1.29 1.32 3.1 7. J1913+1102 0.206 0.090 2.875 1.65 1.24 ~5 8. J1757-1854 0.184 0.606 2.74 1.35 1.39 ~0.75 × 10 8 yrs Ø Total Mass of NS in compact NS-NS is likely to be in a narrow range, m ≈ 2.73±0.15 M sun

  7. II A Typical scenarios for NS-NS merger • Constraints from radio-telescope observations : 1. Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013) à equation of state (EOS) for NS has to be stiff 2. Typical total mass of compact binary neutron stars à ~ 2.73±0.15 solar mass (by Pulsar timing obs.) • Numerical relativity simulations have shown that merger results typically in high-mass neutron stars (not BH) (Shibata et al. 2005, 2006.. recently many works….)

  8. Possible outcomes of NS-NS mergers & Prediction by numerical relativity Likely typical cases M thr > ~2.8 M sun for M tot = 2.6—2.8 M sun Depends on EOS

  9. Mass ejection history for MNS formation Time after merger 0 10 100 1000 ms Dynamical ejection (Sec. III) (determined by dynamical timescale of NS) MHD/viscous ejection (Sec. IV) (by viscous timescale of remnant MNS/torus) Neutrino irradiation (for neutrino emission timescale) (minor effects in mass but major effect in Y e )

  10. II B Scenarios for BH-NS merger • Almost no observational constraints à Wide parameter space has to be explored • Fate = two possibilities: 1. Tidal disruption of NS 2. Simple plunge of NS into BH (no disruption)

  11. Condition for tidal disruption ( ) < BH tidal force ( ) For tidal disruption, Self gravity of NS ⇓ 3 M NS 2 α R NS 3 ( ) M BH α R NS ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ M NS ) ⇒ 1 ≤ M BH ( α > 1 2 < ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ r 3 r M BH M NS ( ) α R NS ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ISCO r α R NS • For tidal disruption v Large NS Radius or B NS H v Small BH mass or v High corotation spin R NS ISCO is necessary B NS H

  12. For tidal disruption of plausible BH-NS with M NS =1.35 M sun , R NS ~ 12 km, & M BH > 5 M sun High BH spin is necessary > ~ 0.5 Foucart et al. ( ‘ 13,14,…); Kyutoku et al. (‘15) 3 7 M NS 2 3 3 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 1 ≤ 0.1 6 M BH R NS ⎛ ⎞ α ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ r M BH 6 M NS 1.7 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ISCO ( M BH ≤ r ISCO ≤ 9 M BH )

  13. Mass ejection history for BH-NS � (in the case of tidal disruption of NS) � & NS-NS à prompt collapse to BH Time after merger 0 10 100 1000 ms Dynamical ejection (Sec. III) (determined by dynamical timescale of system) Long-term MHD/viscous ejection (Sec. IV) (by viscous timescale of disk/torus) (Fernandez-Metzger ’13, ‘14, Just+ ‘15…) Neutrino irradiation (would be minor)

  14. III Dynamical mass ejection • First, for NS-NS • Then, for BH-NS

  15. Neutrino-radiation hydro for dynamical ejecta Stiff EOS (DD2, R ~13.2 km): 1.30-1.40 M sun Total mass ~ 0.001—0.01 M sun Rest-mass density depending on EOS & each mass Orbital plane Neutrino luminosity (mass ratio 0.8—1.0) ν e ν e ν others x-z plane Ejection occurs primarily toward equatorial plan Sekiguchi et al. 2016 15

  16. Summary for dynamical ejecta mass in NR Ejecta mass depends significantly on NS EOS & mass Nearly equal Unequal mass: Small total mass m 1 / m 2 < 0.9 mass system ( M tot ~ 2.7 M sun ) ( M tot ~ 2.7 M sun ) (< 2.6 M sun ) HMNS à BH HMNS à BH MNS (long lived) Soft EOS M eje ~10 -2 M sun M eje ~10 -3 M sun M eje ~10 -2 M sun ( R =11-12 km) MNS (long lived) MNS (long lived) MNS (long lived) Stiff EOS M eje ~10 -2.5 M sun M eje ~10 -3 M sun M eje ~10 -3 M sun ( R =13-15km) e.g. Foucart et al. ’16 Ø Typical average velocity: 0.15—0.25 c See also the talk slide by Bauswein on June 5th

  17. High temperature ⇒ γγ → e − + e + , n + e + → p + ν e Neutrino-radiation hydrodynamics simulation SFHo ( R ~11.9 km): 1.30-1.40 M sun Neutrino irradiation ⇒ n + ν → p + e − Y e =[p]/[nucleon] Electron fraction (x-y) Neutrino luminosity ν e ν e ν others Electron fraction (x-z) Green = neutron rich 17 Sekiguchi et al. (2016)

  18. Electron fraction profile: Broad t - t M-6 [ms] Sekiguchi et al. 2015 PRD 1.35-1.35 solar case 10 0 SFHo Original values DD2 Fraction of mass of NS 10 -1 TM1 10 -2 10 -3 0 0.1 0.2 0.3 0.4 0.5 Ye Ø Average depends on EOS but typically peak at 0.2—0.3 Ø Broad distribution irrespective of EOS Ø Similar results by Radice+16, Lehner+15,16 ……..

  19. Good agreement with solar abundance pattern -2 10 solar r-abundance -3 TM1 (1.35+1.35) 10 DD2 (1.35+1.35) SFHo (1.35+1.35) -4 10 abundance lanthanide -5 10 -6 Y e ~ 0.4 10 κ ~ 0.1cm 2 /g Y e ~ 0.25 Y e < 0.15 -7 10 κ ~ 1cm 2 /g κ ~ 10 cm 2 /g Wanajo, Sekiguchi unpublished -8 10 0 50 100 150 200 250 mass number

  20. Neutrino-radiation hydrodynamics simulation Y e SFHo ( R ~11.9 km): 1.25-1.55 M sun More neutron-rich except for disk surrounding BH Green = neutron rich Shibata et al. (2017)

  21. Electron fraction distribution: Broad irrespective of EOS and mass à Good for producing a variety of r-elements 10 0 Asymmetric binary SFHo 135-135 Soft EOS 133-137 130-140 10 -1 Mass fraction 125-145 Mass fraction 10 -2 10 -3 10 -4 10 0 DD2 135-135 130-140 Stiff EOS 125-145 10 -1 Mass fraction 10 -2 10 -3 10 -4 0 0.1 0.2 0.3 0.4 0.5 Electron fraction (Ye) Sekiguchi+ ‘16 Electron fraction Y e See also Radice ‘16 , ‘17

  22. Neutrino irradiation: subdominant effect for mass ejection but important for Y e Ejecta mass Electron fraction Heating on Heating on Heating off Heating off Sekiguchi+ 2015 Neutrino irradiation from MNS increases Ø the ejecta mass increases by ~ 0.001 solar mass Ø Average value of Y e increases by ~ 0.03 in 30 ms See also, Perego et al. 2014; Goriely et al. 2015; Martin et al. 2015; Foucart et al. 2016

  23. Note on massive NS-NS merger à Direct BH formation May be the fate for PSR J1913+1102 of total mass 2.875 M sun Ø For this case, mass ejection is possible only at a merger phase of short timescale • Nearly equal-mass : negligible mass ejection < 0.001 solar mass (e.g., Shibata + ‘06, Hotokezaka et al ‘13) • Asymmetric case : Mass increases with the degree of asymmetry; could be ~ 0.01 solar mass for q ~0.75 • Y e would be always low (almost no heating & no neutrino irradiation) See also talk slide by Bauswein on June 5th

  24. Note on ejecta velocity: presence of high v � HB-135-135 10 -2 N182 V ave ~ 0.2c but N150 10 -3 N130 N110 M eje [ M sun ] 10 -4 Effect of shock heating 10 -5 10 -6 10 -7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 v / c

  25. BH-NS merger (SFHo EOS: density) M BH =5.4M sun , M NS =1.35M sun , a BH =0.75 Mass ejection occurs by tidal force of BH Kyutoku et al. 2018; Also many pioneer works by F. Foucart et al.

  26. BH-NS with NS mass 1.35M sun (Q=5 & 7) Data: Kyutoku et al. 2015 10 -1 M NS =1.35 solar mass GW170817 Higher spin M *ejecta (solar mass) 10 -2 Dim EM signals? Soft EOS Stiff EOS results in 10 -3 < ~0.01 M sun high mass > 0.01 M sun M BH =9.45, a=0.75 M BH =9.45, a=0.50 M BH =6.75, a=0.50 10 -4 10 11 12 13 14 15 Radius of 1.35 solar mass NS R 1.35 (km) High BH spin is important for mass ejection

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend