martin braun background experiments
play

Martin Braun } Background } Experiments EUT Set-up Result Power - PowerPoint PPT Presentation

Postgraduate symposium on household energy consumption, technology and efficiency University of Birmingham, 6 th June 2012 Martin Braun } Background } Experiments EUT Set-up Result Power reduction THD } Discussion }


  1. Postgraduate symposium on household energy consumption, technology and efficiency University of Birmingham, 6 th June 2012 Martin Braun

  2. } Background } Experiments ◦ EUT ◦ Set-up ◦ Result – Power reduction ◦ THD } Discussion

  3. } Interest in voltage optimisation at least since Oil Shock in 1970 (Erickson and Gilligan, 1982, Kirshner and Giorsetto, 1984, Preiss and Warnock, 1978) } Lighting investigated for domestic lighting: Incandescent and fluorescent lamps (Chen et al., 1982, Gustafson, 1981) } Voltage reduction (Trust, 2011)

  4. } P = V x I x cos φ } From 240V ±6% (225.6V-254.4V) è 230V ±10% (207V-253V) (BSI, 2011) } P Resitor (cos φ = 1) = V 2 /R } 10% voltage reduction è ≈ 20% Power reduction

  5. 1.3 Current Lumens Power Life 1.15 1 0.85 Voltage ¡ 110% ¡ 100% ¡ reduc-on →100% →90% 0.7 Power ¡ -­‑15.9% -­‑15.1% consump-on 0.55 0.85 0.9 0.95 1 1.05 1.1 Figure 1: Characteristic curves of incandescent lamps (Wikipedia, 2012, Simpson, 2003) Light ¡output -­‑38.3% -­‑30.1%

  6. } Fluorescent: Electronic ballast (also with inductive ballast) } CFL: 9W, 11W and 18W, 20W, 21W } LED tube: 10W and 22W } Metal halide: Electronic ballast (also with inductive ballast)

  7. V max : 5V : 207V

  8. No ¡ Devise ¡ Power ¡ ¡ Illuminance ¡ Remarks ¡ 1 ¡ Linear ¡fluorescent ¡-­‑ ¡induc8ve ¡ballast ¡ -­‑25% ¡ -­‑23% ¡ 2 ¡ CFL ¡20W ¡ -­‑20% ¡ -­‑7% ¡ 3 ¡ Metal ¡Halide ¡-­‑ ¡induc8ve ¡ballast ¡ -­‑19% ¡ -­‑18% ¡ 4 ¡ CFL ¡18W ¡ -­‑18% ¡ -­‑11% ¡ 5 ¡ CFL ¡21W ¡ -­‑18% ¡ -­‑14% ¡ 6 ¡ LED ¡10W ¡ -­‑8% ¡ -­‑1% ¡ 7 ¡ CFL ¡11W ¡ -­‑6.5% ¡ -­‑10% ¡ Non-­‑linear ¡ ¡ 8 ¡ Metal ¡Halide ¡-­‑ ¡electronic ¡ballast ¡ -­‑2% ¡ -­‑1% ¡ 9 ¡ LED ¡22W ¡ 0% ¡ 1% ¡ 10 ¡ Linear ¡fluorescent ¡-­‑ ¡electronic ¡ballast ¡ 0% ¡ 0% ¡ 11 ¡ CFL ¡9W ¡ +10.4% ¡ -­‑7% ¡ Non-­‑linear ¡ 12 ¡ Incandescent ¡lamp ¡ -­‑15% ¡ -­‑30% ¡ Comparison ¡ ¡ 13 ¡ Ideal ¡resistor ¡ -­‑19% ¡ N/A ¡ Comparison ¡ ¡

  9. 125% 120% 115% e (%) 110% nce Illuminanc wer, Illumina 105% Power 100% Po 95% 90% 85% 90% 95% 100% 105% 110% Volta tage (%) 9W - Power 9W - Illuminance 11W - Power 11W - Illuminance

  10. 0.2 0.15 0.1 0.05 0 35 -0.05 30 -0.1 -0.15 25 -0.2 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 20 Lamp ¡ THD ¡ 15 Fluorescent – inductive 102.3% 10 Fluorescent – electronic 22.15% 5 CFL (18W) 347.92% 0 0 5 10 15 20 25 Harmonics number LED 10W 223.51% LED 22W 251.01%

  11. } Savings potential ◦ Up to 25% (10% voltage reduction) fluorescent with magnetic (18% (Carbon Trust, 2011, 18)) ◦ Venal et al. (2009): City-type load 16% (10% voltage reduction) } Reduction of light output è Switch on more lamps } Building vs distribution wide?

  12. } Low power CFL ◦ Can be non linear, even increase ◦ Current THD squander power rather then conserve energy (Chapman, 2001, Khan and Abas, 2011) } Electronic ballast ◦ Voltage reduction è Increased current increases supply losses α I 2 } Research: Costs of large scale adoption of CFL (and similar electronics)

  13. BSI 2011. BS EN 60038:2011 CENELEC standard voltages, London: BSI. CARBON TRUST 2011. Voltage management. London: Carbon Trust. CHAPMAN, D. 2001. Power quality application guide: Harmonics cause and effects, Hemel Hemstead: Copper Development Association. CHEN, M. S., SHOULTS, R., FITZER, J. & SONGSTER, H. 1982. The Effects of Reduced Voltages on the Efficiency on Electric Loads. IEEE Transactions on Power Apparatus and Systems, 101, 2158-2166. ERICKSON, J. C. & GILLIGAN, S. R. 1982. The Effects of Voltage Reduction on Distribution Circuit Loads. Power Apparatus and Systems, IEEE Transactions on, PAS-101, 2014-2018. GUSTAFSON, M. W. 1981. Residential End Use Load Affected by Voltage Reduction. IEEE Transactions on Power Apparatus and Systems, PAS-100, 4381-4388. KHAN, N. & ABAS, N. 2011. Comparative study of energy saving light sources. Renewable and Sustainable Energy Reviews, 15, 296-309. KIRSHNER, D. & GIORSETTO, P. 1984. Statistical Test of Energy Saving Due to Voltage Reduction. Power Apparatus and Systems, IEEE Transactions on, PAS-103, 1205-1210. PREISS, R. F. & WARNOCK, V. J. 1978. Impact of Voltage Reduction on Energy and Demand. Power Apparatus and Systems, IEEE Transactions on, PAS-97, 1665-1671. SIMPSON, R. S. 2003. Lighting control: technology and applications, Oxford: Focal. VINNAL, T., JANSON, K. & KALDA, H. Analysis of power consumption and losses in relation to supply voltage quality. Power Electronics and Applications, 2009. EPE '09. 13th European Conference on, 8-10 Sept. 2009 2009. 1-9. WIKIPEDIA. 2012. Lamp Rerating [Online]. Available: http://en.wikipedia.org/wiki/Lamp_rerating [Accessed 01 June 2012].

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend