markowitz principles for multi period portfolio selection
play

Markowitz Principles for Multi-Period Portfolio Selection Problems - PowerPoint PPT Presentation

Markowitz Principles for Multi-Period Portfolio Selection Problems with Moments of any Order and Constraints Thamayanthi Chellathurai Enterprise Risk & Portfolio Management Bank of Montreal, Toronto Disclaimer: The opinion expressed in


  1. Markowitz Principles for Multi-Period Portfolio Selection Problems with Moments of any Order and Constraints Thamayanthi Chellathurai Enterprise Risk & Portfolio Management Bank of Montreal, Toronto Disclaimer: The opinion expressed in this talk is that of the author only, and not that of the Bank of Montreal

  2. Outline 1. Single-Period Portfolio Selection 2. Limitations 3. Multi-Period Portfolio Selection 4. Multi-Period Portfolio Selection with Non- Negative Wealth Constraints 5. Numerical Results 6. Conclusion 2

  3. Markowitz Single-Period Model = t t 0 t = T th → = S Price of one unit of i asset at t 0 i , 0 th → = S Price of one unit of i asset at t T i , T → r Interest rate → T Planning horizon 3

  4. Markowitz Single-Period Model Risk-free Asset rT S S e 0 , 0 0 , 0 Risky Assets ( N ) S i , 0 S , i T 4

  5. U U 0 , 0 0 , 0 S S 0 , 0 0 , T U U 1 , 0 1 , 0 W ( 0 ) S S , W ( T ) 1 , 0 1 T t = t = T t 0 U U N , 0 N , 0 S S N , T N , 0 = + + + ( 0 ) ... W U S U S U S 0 , 0 0 , 0 1 , 0 1 , 0 N , 0 N , 0 = + + + W ( T ) U S U S ... U S 0 , 0 0 , T 1 , 0 1 , T N , 0 N , T th → U Number of Shares of i asset i , 0 = transacted at t 0 5

  6.     N S S W ( T ) W ( 0 ) ∑ i , T i , 0   = + − U , 0   i S S S S   = i 1 0 , T 0 , 0 0 , T 0 , 0 = Problem : Given W ( 0 ), U ? i , 0 6

  7.   S S 1 , T 1 , 0 −   S S     U 0 , T 0 , 0 1 , 0         S S     U 2 , T 2 , 0 − 2 , 0     S S = = A , Q 0 , T 0 , 0     . .     .     . .     .  U    S S , 0 N N , T N , 0   − S S   0 , T 0 , 0 7

  8. W ( T ) W ( 0 ) T = + Q A S S 0 , 0 , 0 T     ( ) ( 0 ) W T W T   = + ( ) E E Q A    S  S 0 , T 0 , 0     W ( T )   T = Var A C A   S   0 , T { } [ ] [ ] T = − − C E Q E ( Q ) Q E ( Q ) → Covariance matrix 8

  9. Markowitz Problem Find A that minimizes     1 W ( T ) 1   T = Var A C A   2 S 2   0 , T subject to     G W ( T ) W ( 0 ) W ( T )   T = + = E E ( Q ) A    S  S S 0 , T 0 , 0 0 , T 9

  10.   G W ( T ) W ( 0 )   − S S   0 , T 0 , 0 − 1 = A C E ( Q ) opt T − 1 E ( Q ) C E ( Q )         G W ( T ) W ( 0 ) W ( T ) W ( 0 )     − = − E     S S S S     0 , T 0 , 0 0 , T 0 , 0         G W ( T ) W ( 0 ) W ( T ) W ( 0 ) 1     − = − Std      S S   S S  T − 1 E ( Q ) C E ( Q ) 0 , T 0 , 0 0 , T 0 , 0 Efficient Frontier         W ( T ) W ( 0 ) W ( T ) W ( 0 ) −     T 1 − = − ( ) ( ) E Std E Q C E Q     S S S S     0 , T 0 , 0 0 , T 0 , 0 10

  11. ● Short-sale restrictions ● Bounds on asset holdings ● Transaction costs ● Sensitivity to E(Q) and C ( Perold 1984, Best & Grauer 1991, Best & Hlouskova 2008, Roman & Mitra 2009, Best 2010 ) 11

  12. Issues 1. Single Period • Now or Never Volatility is Risk NOT an • Opportunity (Fernholz & Shay 1982, Luenberger 1998) 2. Moments • First and Second only 12

  13. Multi-Period Markowitz Principles ( Proc. Roy. Soc., 2002 ) t …… 0 1 2 M M+1 th → = Price of one unit of i asset at t t S i , j j th → U Number of shares of of i asset held i , j = at t t after tran saction j 13

  14. Multi-Period Markowitz Principles U U , U U U U , − 0 , M 1 0 M 0 , 0 0 , 0 0 , 1 0 M S S S , S 0 , 0 + 0 , 1 0 M 0 , M 1 U U , U U , − 1 , M 1 1 M U U 1 , 1 1 M S , S 1 , 0 1 , 0 S S 1 M 1 , 0 1 , 1 1 , + 1 M U , U U , N M U U U − N , M 1 N M N , 0 N , 0 N , 1 S S S S , , + 1 N M , 0 , 1 N N N M 14

  15. U 0 , 0 S 0 , 0 U 1 , 0 W ( 0 ) S 1 , 0 t = t 0 U N , 0 S N , 0 = + + + W ( 0 ) U S U S ... U N S 0 , 0 0 , 0 1 , 0 1 , 0 , 0 N , 0 15

  16. U U 0 , 0 0 , 1 S S 0 , 1 0 , 1 U U 1 , 0 1 , 1 S S 1 , 1 1 , 1 t = t 1 U U N , 0 N , 1 S S N , 1 N , 1 N N ∑ ∑ ● Instant Transaction = U S U S i , 0 i , 1 i , 1 i , 1 ● Frictionless = = i 0 i 0 16

  17. U 0 , M S + 0 , M 1 U , 1 M W ( T ) S + 1 , M 1 = t t M + 1 = T U N , M S + N , M 1 Wealth Dynamics N ∑ = ( 0 ) W U S i , 0 i , 0 i = 0 N N ∑ ∑ = = U S U S , j 1 , 2 , ... , M − i , j 1 i , j i , j i , j = = i 0 i 0 N ∑ = W ( T ) U S i , M i , M + 1 17 = i 0

  18. t = t j U U 0 , j − 0 , j 1 α = − U U S − 0 , j 0 , j 0 , j 0 , j 1 U U , − 1 , j 1 1 j α = − U U S 1 , j − 1 , j 1 , j 1 , j 1 U U α = − U U , − N j 1 N , j − N , j N , j N , j 1 S N , j 18

  19.     N S S W ( t ) W ( t ) ∑ i , 1 i , 0   1 0 = + − U   i , 0 S S S S   = i 1 0 , 1 0 , 0 0 , 1 0 , 0 = + k 2, 3, ... , M 1     N S S W ( t ) W ( t ) ∑ i , k i , 0   k 0 = + − U   i , 0 S S S S   = i 1 0 , k 0 , 0 0 , k 0 , 0     − S k 1 N S ∑ ∑ i , j i , k   + − α i , j   S S   = = j 1 i 1 0 , k 0 , j ( Proc. Roy. Soc., 2002 ) = → U , i 1, 2, ... , N Determinis tic Controls i , 0 α = = → , i 1, 2, ... , N, j 1, 2, ... , M Stochastic Controls i , j 19

  20. Multi-Period Markowitz Principles     N S S W ( t ) W ( t ) ∑ + i , M 1 i , 0   M + 1 0 = + − U   i , 0 S S  S S  = i 1 + + 0 , M 1 0 , 0 0 , M 1 0 , 0     S M N S ∑ ∑ + i , M 1 i , j   + − α ,   i j S S   = = j 1 i 1 + 0 , M 1 0 , j = → U , i 1, 2, ... , N Determinis tic Controls i , 0 α = = → , i 1, 2, ... , N, j 1, 2, ... , M Stochastic Controls i , j → Non - Anticipati ve Processes 20

  21. Parametrization of Stochastic Controls (Proc. Roy. Soc., 2008)     N S S ∑ − k k , j k , j 1   α = + − Linear : V B i , j i , j i , j   S S   k = 1 − 0 , j 0 , j 1 Quadratic :     N S S ∑ − k k , j k , j 1   α = + − V B i , j i , j i , j   S S   k = 1 − 0 , j 0 , j 1         N l S S S S ∑∑ − − l , k l , j l , j 1 k , j k , j 1     + − − D     i , j S S S S     = = l 1 k 1 − − 0 , j 0 , j 1 0 , j 0 , j 1 k l , k V , B , D Determinis tic Parameters i , j i , j i , j Un knowns to be determined 21

  22. Multi-Period Markowitz Principles W ( t ) W ( t ) T + M 1 0 = + Q A S S + 0 , M 1 0 , 0 → Q Stochastic vector of Asset Prices, linear & quadratic terms k → A Determinis tic vector of Unknowns, U , V , B i,0 i, j i, j     W ( t ) W ( t )   T + M 1 0 = + E E ( Q ) A    S  S 0 , + 1 0 , 0 M     W ( t ) T  +  M 1 = Var A C A   S   + 0 , M 1 { } [ ][ ] T = − − C E Q E ( Q ) Q E ( Q ) → E ( Q ) Means as well as higher order moments → C Second order and higher order moments 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend