marginalization simplest multivariate problem x x 1 x p
play

Marginalization Simplest multivariate problem: X = ( X 1 , . . . , X - PDF document

Marginalization Simplest multivariate problem: X = ( X 1 , . . . , X p ) , Y = X 1 (or in general Y is any X j ). Theorem 1 If X has density f ( x 1 , . . . , x p ) and q < p then Y = ( X 1 , . . . , X q ) has density f Y ( x 1 , . . . , x q )


  1. Marginalization Simplest multivariate problem: X = ( X 1 , . . . , X p ) , Y = X 1 (or in general Y is any X j ). Theorem 1 If X has density f ( x 1 , . . . , x p ) and q < p then Y = ( X 1 , . . . , X q ) has density f Y ( x 1 , . . . , x q ) � ∞ � ∞ = −∞ f ( x 1 , . . . , x p ) dx q +1 . . . dx p . −∞ · · · f X 1 ,...,X q is the marginal density of X 1 , . . . , X q f X the joint density of X but they are both just densities. “Marginal” just to distinguish from the joint density of X . 22

  2. Example : The function f ( x 1 , x 2 ) = Kx 1 x 2 1( x 1 > 0 , x 2 > 0 , x 1 + x 2 < 1) is a density provided � ∞ � ∞ P ( X ∈ R 2 ) = −∞ f ( x 1 , x 2 ) dx 1 dx 2 = 1 . −∞ The integral is � 1 � 1 − x 1 K x 1 x 2 dx 1 dx 2 0 0 � 1 0 x 1 (1 − x 1 ) 2 dx 1 / 2 = K = K (1 / 2 − 2 / 3 + 1 / 4) / 2 = K/ 24 so K = 24. The marginal density of x 1 is � ∞ f X 1 ( x 1 ) = −∞ 24 x 1 x 2 × 1( x 1 > 0 , x 2 > 0 , x 1 + x 2 < 1) dx 2 � 1 − x 1 =24 x 1 x 2 1(0 < x 1 < 1) dx 2 0 =12 x 1 (1 − x 1 ) 2 1(0 < x 1 < 1) . This is a Beta(2 , 3) density. 23

  3. General problem has Y = ( Y 1 , . . . , Y q ) with Y i = g i ( X 1 , . . . , X p ). Case 1 : q > p . • Y won’t have density for “smooth” g . • Y will have a singular or discrete distribu- tion. • Problem rarely of real interest. • (But, e.g., residuals have singular distribu- tion.) 24

  4. Case 2 : q = p . • We use a change of variables formula • Generalizes the one derived above for the case p = q = 1. 25

  5. Case 3 : q < p . • Pad out Y –add on p − q more variables (carefully chosen) • say Y q +1 , . . . , Y p . • Find functions g q +1 , . . . , g p . • Define for q < i ≤ p , Y i = g i ( X 1 , . . . , X p ) and Z = ( Y 1 , . . . , Y p ) . • Choose g i so that we can use change of variables on g = ( g 1 , . . . , g p ) to compute f Z . • Find f Y by integration: f Y ( y 1 , . . . , y q ) = � ∞ � ∞ −∞ · · · −∞ f Z ( y 1 , . . . , y q , z q +1 , . . . , z p ) dz q +1 . . . dz p 26

  6. Change of Variables: general Suppose Y = g ( X ) ∈ R p with X ∈ R p having density f X . Assume g is a one to one (“injective”) map, i.e., g ( x 1 ) = g ( x 2 ) if and only if x 1 = x 2 . Find f Y : Step 1: Solve for x in terms of y : x = g − 1 ( y ). Step 2: Use basic equation: f Y ( y ) dy = f X ( x ) dx and rewrite it in the form f Y ( y ) = f X ( g − 1 ( y )) dx dy . Interpretation of derivative dx dy when p > 1: � �� � dx ∂x i � � dy = � det � � � � ∂y j � which is the so called Jacobian . 27

  7. Equivalent formula inverts the matrix: f Y ( y ) = f X ( g − 1 ( y )) � dy � � � � dx � This notation means � ∂y 1 ∂y 1 ∂y 1 �   · · · � � ∂x 1 ∂x 2 ∂x p � � dy � � . �   � . � � . � = det �   � � � dx �   � � ∂y p ∂y p ∂y p � �   · · · � � ∂x 1 ∂x 2 ∂x p � � but with x replaced by the corresponding value of y , that is, replace x by g − 1 ( y ). 28

  8. Example : The density − x 2 1 + x 2 � � f X ( x 1 , x 2 ) = 1 2 2 π exp 2 is the standard bivariate normal density . Let Y = ( Y 1 , Y 2 ) where � X 2 1 + X 2 Y 1 = 2 and 0 ≤ Y 2 < 2 π is angle from the positive x axis to the ray from the origin to the point ( X 1 , X 2 ). I.e., Y is X in polar co-ordinates. Problem is to find joint density of Y 1 and Y 2 . 29

  9. Step 1 : Solve for x in terms of y : = Y 1 cos( Y 2 ) X 1 = Y 1 sin( Y 2 ) X 2 Thus g ( x 1 , x 2 ) = ( g 1 ( x 1 , x 2 ) , g 2 ( x 1 , x 2 )) � x 2 1 + x 2 = ( 2 , argument( x 1 , x 2 )) g − 1 ( y 1 , y 2 ) ( g − 1 1 ( y 1 , y 2 ) , g − 1 = 2 ( y 1 , y 2 )) = ( y 1 cos( y 2 ) , y 1 sin( y 2 )) � � � �� � dx cos( y 2 ) − y 1 sin( y 2 ) � � � � = � det � � � � sin( y 2 ) y 1 cos( y 2 ) � dy � � � � � � = y 1 . 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend