marc lachi ze rey grenoble 2008 outline i historical
play

Marc Lachize-Rey Grenoble 2008 Outline I Historical elements - PowerPoint PPT Presentation

La constante cosmologique Marc Lachize-Rey (APC, Paris) Marc Lachize-Rey Grenoble 2008 Outline I Historical elements II Elements of cosmology III Observational evidences for accelerating universe IV Possible solutions Dark


  1. La constante cosmologique Marc Lachièze-Rey (APC, Paris) Λ Marc Lachièze-Rey – Grenoble 2008

  2. Outline I Historical elements II Elements of cosmology III Observational evidences for accelerating universe IV Possible solutions Dark energy ? Modify gravity ? The genuine cosmological constant Not a « problem » but a possible solution The physics with lambda - Marc Lachièze-Rey – Grenoble 2008

  3. Short history of Λ General relativity : • Einstein 1916 : no cosmological constant • Einstein 1917: first relativistic model --> gr with Λ • 1930 (Slipher, Hubble, Lemaître) : cosmic expansion --> Einstein renounces to Λ • age problem : Lemaître « saves » the “big bang” with Λ later : Cosmic distance Recalibration : Λ useless ? --> CDM paradigm (1970’s) : Λ = = 0 0 • age , galaxy formation --> CDM- Λ • SN’s observations confirm need for Λ • at the same moment, rejection of Λ --> dark energy ? Marc Lachièze-Rey – Grenoble 2008

  4. Original GR (Einstein, 1916) Gravitation = geometry of space-time: metric g --> Riemann and Ricci tensors, Einstein tensor G The material content of the universe determines the geometry : Einstein Equation : G(g) = χ T T = energy-momentum tensor of material content = the source of gravitation Marc Lachièze-Rey, Grenoble 4 2008

  5. Relativistic Cosmology (Einstein 1917) GR is an ideal tool for cosmology : cosmic model = a space-time describing the whole universe, solution of Einstein equations function of the average material content (matter, radiation, etc.) Einstein wants a cosmic model: • without spatial infinite : closed spatial sections • without spatial limit • static (expansion unknown in 1917) No such solution to Einstein equation as written --> Einstein modifies its equation Marc Lachièze-Rey, Grenoble 5 2008

  6. New Einstein equation (1917) G(g) = χ T G(g) = χ T + Λ g New term Λ = cosmological constant - (no other term possible from mathematical consistency) - absolute constant - non material - repulsive effect - [almost] no « local » effet (in Solar System, galaxies, bh, …): Only at cosmological scales. --> Einstein cosmological model Static : attraction by matter balanced by repulsion by Λ space = a three-sphere : closed, no boundary ! Marc Lachièze-Rey, Grenoble 6 2008

  7. Cosmic expansion (1930) • Observations by Vesto Slipher, Edwin Hubble --> Hubble law (1929) • Theoretical work by Georges Lemaître (“Hubble law” 1927) --> cosmic expansion --> no static model --> no need for Λ ? Marc Lachièze-Rey, Grenoble 7 2008

  8. Cosmic expansion (1930) Marc Lachièze-Rey, Grenoble 8 2008

  9. Lemaître (1931) : primordial atom (--> later : big bang) Marc Lachièze-Rey, Grenoble 9 2008

  10. Lemaître (1931) : primordial atom (--> later : big bang) Age problem : wrong calibrations --> Age of the Universe < age of the Earth ! possible solution : Λ also, galaxy formation difficult without Λ : Lemaître « saves » the big bang with Λ Marc Lachièze-Rey, Grenoble 10 2008

  11. • Controversy : Einstein equation with or without Λ ? (Einstein will get out of the cosmological debate) Marc Lachièze-Rey, Grenoble 11 2008

  12. …History… • 1960’s : Cosmic distance Recalibration --> age problem resolved without Λ : Λ useless ? --> CDM big bang paradigm ( 1970’s) : Λ = Ω Λ = 0 Ω matter = 1 But Age of the universe: One needs Λ Galaxy formation --> idem --> CDM- Λ • 1990: Supernova observations (a classical cosmological test) --> the expansion accelerates, exactly as predicted by Λ confirms the need of Λ : CDM- Λ • concordance : also confirmed by other observations • More recently : « GR with Λ unsatisfactory » --> Search another explanation for cosmic data (must mimick Λ ) Marc Lachièze-Rey – Grenoble 2008

  13. II Cosmic parameters • Cosmic Dynamics • Spatial curvature : • Cosmological constant Λ • Content = source of gravitation Marc Lachièze-Rey, Grenoble 13 2008

  14. Cosmic dynamics • Expansion law: scale factor R(t) • expansion • rate Present Value = Hubble constant = H 0 ≈ 70 km /sec /Mpc < 0 acceleration • deceleration parameter > 0 deceleration -.55 - Third derivative --> parameter w - Beyond w = w(z)… Marc Lachièze-Rey, Grenoble 14 2008

  15. Spatial curvature • • • k = sign • R C = spatial curvature radius • Fundamental • relation : • Marc Lachièze-Rey, Grenoble 15 2008

  16. [genuine] cosmological Constant • Λ constant by definition (required by mathematical consistency) • In cosmic units : ( ≈ 0.7) • Fundamental length scale (constant) R Λ =( Λ ) -1/2 ∼ 3 Gpc Marc Lachièze-Rey, Grenoble 16 2008

  17. Material content = source of gravitation : For any substance : • energy density ρ in cosmological units (density parameter) • pressure p cosmological influence depends on ρ +3p • equ. of state p = f( ρ ) , parametrized as Non relativistic matter ( = dust) p ≈ 0 : w = 0 Radiation p = ρ / 3 : w= 1 / 3 Nothing else known in physics Marc Lachièze-Rey – Grenoble 2008

  18. ( Equation of State) For a flat Universe: – Matter-dominated Universe � � R � 3 , R � t 2 /3 – Radiation-dominated Universe � � R � 4 , R � t 1/2 – Vacuum-dominated Universe � � R 0 , R � e Ht Marc Lachièze-Rey – Grenoble 2008

  19. Exotic substance as a source of gravitation ? Accelerating ρ +3p < 0 ⇔ w < -1/3 ⇔ w = -1 : same cosmological effect than Λ w ∼ -1 : similar effects: exotic (dark) energy some physical basis ? see later Marc Lachièze-Rey – Grenoble 2008

  20. Summary .98 < Ω total < 1.08 Ω rad ~ 5 10 -5 Ω baryons ~ 0.04 Ω matter ~ .3 ==> Ω Λ ~ .7 Even without SN’s observations Marc Lachièze-Rey – Grenoble 2008

  21. III Observational evidences for accelerating Universe - age of the Universe - Galaxy formation - Cosmography : SNIa - HST, CMB, LSS : concordance -X-ray clusters - BAO (<-- SDSS) - cosmic shear -Sachs-Wolfe integrated effect Marc Lachièze-Rey – Grenoble 2008

  22. Age of the universe The strongest the more direct historically the first evidence for lambda Marc Lachièze-Rey, Grenoble 22 2008

  23. Age of the universe t U = « time » duration since the univers was « very small ». Finite by definition in big bang models.  Function of the cosmic parameters Marc Lachièze-Rey, Grenoble 23 2008

  24. t_ U > ages of oldest stars ( ∼ 12 Gyrs) ==> Λ ≠ 0 Galaxy formation • If Λ =0, no sufficient time for the galaxies to form (Lemaître, 1930’s) 1980’s --> CDM Λ paradigm Marc Lachièze-Rey, Grenoble 24 2008

  25. Supernovas (SNIa) = luminosity distance measurements CLASSICAL COSMOLOGICAL TEST : Hyp : SNIa are standardizable candles L D lum = 4 � f Riess et al. 1998, AJ 116,, 1009 (High-Z SN Search) Perlmutter et al 1999, ApJ 517, 565 (SCP) Perlmutter 2003,Physics Today Marc Lachièze-Rey – Grenoble 2008

  26. Supernova cosmology project (Knop, Perlmuter) Do we have good data, good interpretation of them ? • Are SNs good standard candles ? • May some substance interact with the photons and modify our perception of SN data? ••• But concordance Marc Lachièze-Rey – Grenoble 2008

  27. (SN observations) • SuperNova Legacy Survey (SNLS) P. Astier,et al , A&A, 447, 31, (2006) • ”gold” data set of supernovae Riess et al. http://fr.arxiv.org/abs/astro-ph/0611572 • The ESSENCE Supernova Survey: In its first four years, 102 type Ia SNe, at z from 0.10 to 0.78. Marc Lachièze-Rey – Grenoble 2008

  28. (Essence ) Marc Lachièze-Rey – Grenoble 2008

  29. concordance Marc Lachièze-Rey – Grenoble 2008

  30. WMAP Marc Lachièze-Rey – Grenoble 2008

  31. CMB alone measurements are degenerate in Ω M & Ω Λ (requires h) --> Use CMB ( WMAP-3 (Spergel et al. 06) ) + something else something else • Different combinations of HST, SN, LSS, BAO, Shear, LTSW are consistent : Different combinations of HST, SN, LSS, BAO, Shear, LTSW are consistent : Overconstrained model : model : Overconstrained � � ~ 1 � � M ~ 0.7 • CMB + HST : Ω Λ = 0.758 +- 0.06 HST Key Project measurement of the Hubble constant ( Freedman et al. 2001, ApJ 553, 47) : h 100 = 0.72 +- 0.08 • CMB + SNLS : Ω Λ = 0.719 +- 0.03 Marc Lachièze-Rey – Grenoble 2008

  32. Galaxy clusters Marc Lachièze-Rey – Grenoble 2008

  33. Galaxy clusters S.W. Allen et al. 2002 (arXiv:astro-ph/0205007v1) X-ray gas mass fraction (in a sample of luminous X clusters <-- Chandra Observatory) as a function of z --> cosmological constraints Ω m = 0.30+0.04, Ω Λ = 0.95 assuming -a profile (FNW) - a cosmological scenario of cluster formation (gravitational instability) - the value of H 0 (<-- Hubble Key Project) (independent mass confirmation from gravitational lensing studies.) ρ =2500 ρ critical --> radius r 2500 : approximately constant value Marc Lachièze-Rey – Grenoble 2008

  34. Marc Lachièze-Rey – Grenoble 2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend