of cu zn order disorder transition
play

of Cu-Zn order-disorder transition Germain Rey Now at UNSW - PowerPoint PPT Presentation

CZTSSe thin-films and solar cells: effects of Cu-Zn order-disorder transition Germain Rey Now at UNSW Formerly at University of Luxembourg SPREE Seminar, Sydney, 22 th November 2018 g.rey@unsw.edu.au Laboratory for Photovoltaics 1


  1. CZTSSe thin-films and solar cells: effects of Cu-Zn order-disorder transition Germain Rey Now at UNSW Formerly at University of Luxembourg SPREE Seminar, Sydney, 22 th November 2018 g.rey@unsw.edu.au Laboratory for Photovoltaics 1 germain.rey@uni.lu

  2. Introduction • CZTS : Cu 2 ZnSnS 4 – Eg = 1.5 eV • CZTSe : Cu 2 ZnSnSe 4 – Eg = 1.0 eV [1] • CZTSSe : Cu 2 ZnSn(S,Se) 4 – Eg = 1.0-1.5 eV [1] N. Terada et al. Thin Solid Films 582 (2015) 166 • Large absorption coefficient for h ν > Eg • Non-toxic and abundant metals g.rey@unsw.edu.au Laboratory for Photovoltaics 2 germain.rey@uni.lu

  3. Introduction • Cell structure • Efficiency Ni Al TCO 12.6% (2013) Buffer CZTSSe [1] Mo Substrate [1] D. B. Mitzi, et al. Phil. Trans. R. Soc. A 371 (2013) 20110432 g.rey@unsw.edu.au Laboratory for Photovoltaics 3 germain.rey@uni.lu

  4. Introduction • Efficiency limitation [1] [1] [1] L. Grenet, et al. Appl. Ener. Mat. 1 (2018) 2103 g.rey@unsw.edu.au Laboratory for Photovoltaics 4 germain.rey@uni.lu

  5. Introduction • Voc and Band-tails [1] [2] [1] S. De Wolf et al. J. Phys. Chem. Lett. , 5 (2014) 1035 [2] S. Siebentritt et al. Sol. Ener. Mat. & Sol. Cells , 158 (2016) 126 g.rey@unsw.edu.au Laboratory for Photovoltaics 5 germain.rey@uni.lu

  6. Introduction • Ordered Kesterite • Disordered Kesterite [Cu Zn +Zn Cu ] • Structural observation of disorder in Cu/Zn planes: – Neutron diffraction [1], NMR [2], anomalous XRD [3] • Theoretical prediction: – Low formation energy of [Cu Zn +Zn Cu ] [4] [1] S. Schorr SEM&SC 95 (2011) 1482 [3] A. Lafond et al. Acta Cryst. B 70 (2014) 390 [2] L. Choubrac et al. PCCP 15 (2013) 10722 [4] S. Chen et al. Adv. Mater. 25 (2013) 1522 g.rey@unsw.edu.au Laboratory for Photovoltaics 6 germain.rey@uni.lu

  7. Introduction • Cu-Zn Disorder: – Increase in unit cell volume – Rise Valence band [1] [2] [1] S. Schorr SEM&SC 95 (2011) 1482 [2] S. Chen et al. Adv. Mater. 25 (2013) 1522 g.rey@unsw.edu.au Laboratory for Photovoltaics 7 germain.rey@uni.lu

  8. CZTSe Band gap and Cu-Zn (dis)order annealing quenching T & R Change dwell temperature Δ Eg = 110 meV Reversibility and continuity => order-disorder transition G. Rey et al. Applied Physics Letters , 105 (2014) 112106 g.rey@unsw.edu.au Laboratory for Photovoltaics 8 germain.rey@uni.lu

  9. Theoretical description: Vineyard’s model[1] 𝐷𝑣 − 𝐺 𝑇 = 𝑄 𝐷𝑣 • Long range order parameter: 𝐷𝑣 1 − 𝐺 – Perfect order S=1 𝐷𝑣 – Complete disorder S=0 • Theoretical description: Vineyard’s model [1] – Motion equation for direct exchange: Cu Zn 𝑒𝑇 𝑒𝑢 = 1 2 𝐿 𝑃 1 − 𝑇 2 − 𝐿 𝐸 1 + 𝑇 2 S (e) −𝑉 ±3𝑊𝑇 with 𝐿 𝑃/𝐸 = 4𝑔 exp 𝑙 𝐶 𝑈 exp 𝑙 𝐶 𝑈 [1] G. Vineyard Phys. Rev. 102 (1956) 981 G. Rey et al. Applied Physics Letters , 105 (2014) 112106 g.rey@unsw.edu.au Laboratory for Photovoltaics 9 germain.rey@uni.lu

  10. CZTSe Band gap and Cu-Zn (dis)order • Comparison band gap and order parameter 𝑈 𝑑 = 200 °𝐷 𝑔 = 1 𝑈𝐼𝑨 𝑉/𝑙 𝐶 = 15000 𝐿 Linear relationship Critical temperature = 200°C for CZTSe Eg can be used as an order parameter G. Rey et al. Applied Physics Letters , 105 (2014) 112106 g.rey@unsw.edu.au Laboratory for Photovoltaics 10 germain.rey@uni.lu

  11. Cu-Zn (dis)order probed by Raman [1] T. Gurel et al. Phys. Rev. B 84 (2011) 205201 Modification of Raman spectrum : phonon confinement + change in symmetry (Ord K: I4, Dis K: I42m) G. Rey et al. Applied Physics Letters , 105 (2014) 112106 g.rey@unsw.edu.au Laboratory for Photovoltaics 11 germain.rey@uni.lu

  12. Cu-Zn (dis)order probed by Raman • Evolution of Raman spectrum during ordering at 100°C Reversibility and continuity => order-disorder transition g.rey@unsw.edu.au Laboratory for Photovoltaics 12 germain.rey@uni.lu

  13. CZTSe thin film and Cu-Zn (dis)order • Ordering increases the band gap by ~ 10% • Tc for the order-disorder transition in CTZSe 200°C • The band gap can be used as a secondary order parameter • Raman spectrum reflects the changes induced by the order- disorder transition : – symmetry – coherence length g.rey@unsw.edu.au Laboratory for Photovoltaics 13 germain.rey@uni.lu

  14. Cu-Zn (dis)order effect on device • Sample preparation: • ORD DIS post-treatment – Coevaporation at 470°C In-situ Ex-situ g.rey@unsw.edu.au Laboratory for Photovoltaics 14 germain.rey@uni.lu

  15. Cu-Zn (dis)order effect on device • ORD and DIS postdeposition treatment quenching ORD 3-28d 1h Std 1h DIS ORD+DIS g.rey@unsw.edu.au Laboratory for Photovoltaics 15 germain.rey@uni.lu

  16. Cu-Zn (dis)order effect on device • ORD and DIS postdeposition treatment G. Rey et al. Sol. Ener. Mat. & Sol. Cells , 151 (2016) 131 g.rey@unsw.edu.au Laboratory for Photovoltaics 16 germain.rey@uni.lu

  17. Cu-Zn (dis)order effect on device • Voc deficit Constant Voc deficit with order: ↑ Ord r ↑ Eg ↑ Voc : ↑ Voc/Eg G. Rey et al. Sol. Ener. Mat. & Sol. Cells , 151 (2016) 131 g.rey@unsw.edu.au Laboratory for Photovoltaics 17 germain.rey@uni.lu

  18. Cu-Zn (dis)order effect on device • Effect on QE and Jsc n d (cm -3 ) by CVp n d (cm -3 ) by CVp Dis+Ord 10 15 In-Ord 3x10 16 10 16 Dis Ex-situ Ord or Dis -> no or limited effect on Jsc (change in doping) In-situ Ord - > ↑ Jsc (7 mA/cm2) d to ↑ coll ctio at lo g λ G. Rey et al. Sol. Ener. Mat. & Sol. Cells , 151 (2016) 131 g.rey@unsw.edu.au Laboratory for Photovoltaics 18 germain.rey@uni.lu

  19. Cu-Zn (dis)order effect on device • Carrier collection length is increased by the ordering treatment • Ordering increases the band gap and Voc • Ordering does not affect Voc deficit Jsc (mA/cm 2 ) Voc (mV) Eff (%) Std 299 35.5* 5.6* In-Ord 331 42.1* 8.1* +32 +6.6* +2.5* * measured with an halogen lamp G. Rey et al. Sol. Ener. Mat. & Sol. Cells , 151 (2016) 131 g.rey@unsw.edu.au Laboratory for Photovoltaics 19 germain.rey@uni.lu

  20. Nature of kesterite tails • Fluctuating electrostatic • Fluctuating band-gap energy potential 1/3 2 𝑂 𝐽 𝛿 𝑓𝑚 ∝ [1] 𝑞 + ∆𝑞 + ∆𝑜 Electrostatic potential fluctuation can be screened [1] B. Shklovskij & A. Efros, Electronic Properties of Doped Semiconductors (1984) Springer-V. g.rey@unsw.edu.au Laboratory for Photovoltaics 20 germain.rey@uni.lu

  21. Nature of kesterite tails • Temperature and excitation dependent PL of CZTSSe (~9% eff.) Increased Temperature Increased Excitation 15 meV/dec TI TT I exc = 4.5x10 3 W.m -2 Strong blue shift w. excitation & red shift w. temperature => fluctuating band-edges G. Rey et al. Solar Energy Material and Solar Cells 179 (2018) 142 g.rey@unsw.edu.au Laboratory for Photovoltaics 21 germain.rey@uni.lu

  22. Nature of kesterite tails • Behaviour of fluctuation depth with excitation TI + TT EL & BG BG Limited decrease in γ => Band-gap fluctuation is the main mechanism of band-tail formation: 2/3 Band-gap fluctuations + 1/3 Electrostatic fluctuations G. Rey et al. Solar Energy Material and Solar Cells 179 (2018) 142 g.rey@unsw.edu.au Laboratory for Photovoltaics 22 germain.rey@uni.lu

  23. Cu-Zn (dis)order effect on band-tail • Measurement of tail absorption using PL [1] +TMM [2] [1] E. Daub & P. Würfel Phys. Rev. Lett. 74 (1995) 1020 [2] G. Rey et al. Phys. Rev. Appl. 9 (2018) 064008 g.rey@unsw.edu.au Laboratory for Photovoltaics 23 germain.rey@uni.lu

  24. Cu-Zn (dis)order effect on band-tail • CZTSSe Absorption vs Cu-Zn (dis)order Cu-Zn (dis)order parameter: Eg Band-tail parameters: Eu and σ G. Rey et al. Solar Energy Material and Solar Cells 179 (2018) 142 g.rey@unsw.edu.au Laboratory for Photovoltaics 24 germain.rey@uni.lu

  25. Cu-Zn (dis)order effect on band-tail CZTSSe CZTSe Cu/Zn ordering by thermal postdeposition treatment does not reduce Eu and σ => No reduction of the PL red-shift vs. Eg [1] => No improvement of Voc deficit [1][2] [1] G. Rey et al. Solar Energy Material and Solar Cells 151 (2016) 131 - 138 [2] S. Bourdais et al. Advanced Energy Materials 6 (2016) g.rey@unsw.edu.au Laboratory for Photovoltaics 25 germain.rey@uni.lu

  26. Cu-Zn (dis)order effect on band-tail • Avoiding disorder by alloying, example from literature: Cu(Zn,Cd)SnS 4 (Cu,Ag)ZnSnSe 4 [1] [2] [1] C. Yan et al. Energy Letter 2 (2017) 930 [2] T. Gershon et al. Advanced Energy Materials 6 (2016) g.rey@unsw.edu.au Laboratory for Photovoltaics 26 germain.rey@uni.lu

  27. Cu-Zn (dis)order effect on band-tail • Potential candidate: [1] [1] [2Cu Zn + Sn Zn ] would be a good candidate to explain the large band- tailing in kesterite [1] S. Chen et al. Advanced Materials 25 (2013) 1522-1539 g.rey@unsw.edu.au Laboratory for Photovoltaics 27 germain.rey@uni.lu

  28. Cu-Zn (dis)order effect on band-tail • Nature of the kesterite band-tail: – 2/3 band-gap fluctuations – 1/3 electrostatic fluctuations • Cu-Zn ordering by post-deposition annealing has no effect on Eu or σ . • [Cu Zn +Zn Cu ] is not the direct main cause of band-tailing, instead we propose [2Cu Zn +Sn Zn ] as potential candidate. g.rey@unsw.edu.au Laboratory for Photovoltaics 28 germain.rey@uni.lu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend