many geometric realizations of the associahedron
play

MANY GEOMETRIC REALIZATIONS OF THE ASSOCIAHEDRON POLYTOPES & - PowerPoint PPT Presentation

CombinatoireS July 2, 2015 V. PILAUD (CNRS & LIX) MANY GEOMETRIC REALIZATIONS OF THE ASSOCIAHEDRON POLYTOPES & COMBINATORICS SIMPLICIAL COMPLEX simplicial complex = collection of subsets of X downward closed exm: 123 123 123 123


  1. CombinatoireS July 2, 2015 V. PILAUD (CNRS & LIX) MANY GEOMETRIC REALIZATIONS OF THE ASSOCIAHEDRON

  2. POLYTOPES & COMBINATORICS

  3. SIMPLICIAL COMPLEX simplicial complex = collection of subsets of X downward closed exm: 123 123 123 123 123 123 123 123 X = [ n ] ∪ [ n ] ∆ = { I ⊆ X | ∀ i ∈ [ n ] , { i, i } �⊆ I } 12 13 13 12 23 23 23 23 12 13 13 12 1 2 3 3 2 1

  4. FANS polyhedral cone = positive span of a finite set of R d = intersection of finitely many linear half-spaces fan = collection of polyhedral cones closed by faces and where any two cones intersect along a face simplicial fan = maximal cones generated by d rays

  5. POLYTOPES polytope = convex hull of a finite set of R d = bounded intersection of finitely many affine half-spaces face = intersection with a supporting hyperplane face lattice = all the faces with their inclusion relations simple polytope = facets in general position = each vertex incident to d facets

  6. SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES P polytope, F face of P normal cone of F = positive span of the outer normal vectors of the facets containing F normal fan of P = { normal cone of F | F face of P } simple polytope simplicial fan simplicial complex = ⇒ = ⇒

  7. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } 321 � � � �� | J | + 1 � � x ∈ R n +1 � = H ∩ x j ≥ � 2 � j ∈ J ∅ � = J � [ n +1] 312 231 213 132 123

  8. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } 4321 � � � �� | J | + 1 � � x ∈ R n +1 � = H ∩ x j ≥ 4312 � 2 � 3421 j ∈ J ∅ � = J � [ n +1] 3412 4213 2431 2413 2341 3214 2314 1432 1423 3124 1342 1324 2134 1243 1234

  9. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } 4321 � � � �� | J | + 1 � � x ∈ R n +1 � = H ∩ x j ≥ 4312 � 2 � 3421 j ∈ J ∅ � = J � [ n +1] 3412 connections to 4213 • weak order 2431 • reduced expressions • braid moves 2413 2341 • cosets of the symmetric group 3214 2314 1432 1423 3124 1342 1324 2134 1243 1234

  10. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } 4321 � � � �� | J | + 1 3211 � � x ∈ R n +1 � = H ∩ x j ≥ 4312 3321 � 2 2211 � 3312 3421 j ∈ J ∅ � = J � [ n +1] 2311 3212 3412 connections to 2321 4213 • weak order 2312 2212 2431 • reduced expressions 1211 3213 2331 • braid moves 2413 1321 2341 • cosets of the symmetric group 3214 2313 1312 1221 2113 k -faces of Perm ( n ) 2314 1432 1231 1322 1212 1423 3124 ≡ surjections from [ n + 1] 1332 1213 to [ n + 1 − k ] 1323 2123 1342 1222 1112 1324 1232 2134 1223 1243 1123 1233 1234

  11. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } � � � �� 4 | 3 | 2 | 1 | J | + 1 � � 34 | 2 | 1 x ∈ R n +1 � = H ∩ x j ≥ 3 | 4 | 2 | 1 4 | 3 | 12 � 2 34 | 12 � 3 | 4 | 12 4 | 3 | 1 | 2 j ∈ J ∅ � = J � [ n +1] 34 | 1 | 2 3 | 24 | 1 3 | 4 | 1 | 2 connections to 4 | 13 | 2 3 | 2 | 4 | 1 • weak order 3 | 14 | 2 3 | 124 4 | 1 | 3 | 2 • reduced expressions 134 | 2 3 | 2 | 14 4 | 1 | 23 • braid moves 3 | 1 | 4 | 2 14 | 3 | 2 • cosets of the symmetric group 4 | 1 | 2 | 3 3 | 2 | 1 | 4 3 | 1 | 24 13 | 4 | 2 14 | 23 23 | 1 | 4 k -faces of Perm ( n ) 3 | 1 | 2 | 4 1 | 4 | 3 | 2 14 | 2 | 3 13 | 24 1 | 3 | 4 | 2 ≡ surjections from [ n + 1] 2 | 3 | 1 | 4 1 | 4 | 23 13 | 2 | 4 to [ n + 1 − k ] 13 | 2 | 4 2 | 13 | 4 1 | 4 | 2 | 3 ≡ ordered partitions of [ n + 1] 1 | 234 123 | 4 1 | 3 | 2 | 4 1 | 24 | 3 into n + 1 − k parts 2 | 1 | 3 | 4 1 | 23 | 4 1 | 2 | 4 | 3 12 | 3 | 4 1 | 2 | 34 1 | 2 | 3 | 4

  12. PERMUTAHEDRON Permutohedron Perm ( n ) = conv { ( σ (1) , . . . , σ ( n + 1)) | σ ∈ Σ n +1 } � � � �� 4 | 3 | 2 | 1 | J | + 1 � � 34 | 2 | 1 x ∈ R n +1 � = H ∩ x j ≥ 3 | 4 | 2 | 1 4 | 3 | 12 � 2 34 | 12 � 3 | 4 | 12 4 | 3 | 1 | 2 j ∈ J ∅ � = J � [ n +1] 34 | 1 | 2 3 | 24 | 1 3 | 4 | 1 | 2 connections to 4 | 13 | 2 3 | 2 | 4 | 1 • weak order 3 | 14 | 2 3 | 124 4 | 1 | 3 | 2 • reduced expressions 134 | 2 3 | 2 | 14 4 | 1 | 23 • braid moves 3 | 1 | 4 | 2 14 | 3 | 2 • cosets of the symmetric group 4 | 1 | 2 | 3 3 | 2 | 1 | 4 3 | 1 | 24 13 | 4 | 2 14 | 23 23 | 1 | 4 k -faces of Perm ( n ) 3 | 1 | 2 | 4 1 | 4 | 3 | 2 14 | 2 | 3 13 | 24 1 | 3 | 4 | 2 ≡ surjections from [ n + 1] 2 | 3 | 1 | 4 1 | 4 | 23 13 | 2 | 4 to [ n + 1 − k ] 13 | 2 | 4 2 | 13 | 4 1 | 4 | 2 | 3 ≡ ordered partitions of [ n + 1] 1 | 234 123 | 4 1 | 3 | 2 | 4 1 | 24 | 3 into n + 1 − k parts 2 | 1 | 3 | 4 1 | 23 | 4 ≡ collections of n − k nested 1 | 2 | 4 | 3 12 | 3 | 4 1 | 2 | 34 1 | 2 | 3 | 4 subsets of [ n + 1]

  13. COXETER ARRANGEMENT Coxeter fan = fan defined by the hyperplane arrangement 4 | 3 | 2 | 1 3 | 4 | 2 | 1 34 | 12 � x i = x j x ∈ R n +1 � � � 1 ≤ i<j ≤ n +1 4 | 3 | 1 | 2 = collection of all cones 3 | 4 | 1 | 2 � x i < x j if π ( i ) < π ( j ) � x ∈ R n +1 � � 3 | 2 | 4 | 1 4 | 1 | 2 | 3 3 | 124 for all surjections π : [ n + 1] → [ n + 1 − k ] 4 | 1 | 3 | 2 134 | 2 3 | 1 | 4 | 2 3 | 2 | 1 | 4 14 | 23 3 | 1 | 2 | 4 ( n − k ) -dimensional cones 1 | 4 | 3 | 2 1 | 3 | 4 | 2 13 | 24 ≡ surjections from [ n + 1] 1 | 4 | 2 | 3 2 | 3 | 1 | 4 to [ n + 1 − k ] 123 | 4 1 | 3 | 2 | 4 ≡ ordered partitions of [ n + 1] 1 | 234 into n + 1 − k parts 1 | 2 | 4 | 3 2 | 1 | 3 | 4 ≡ collections of n − k nested 1 | 2 | 3 | 4 subsets of [ n + 1]

  14. ASSOCIAHEDRA

  15. ASSOCIAHEDRON Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex ( n + 3) -gon, ordered by reverse inclusion vertices ↔ triangulations vertices ↔ binary trees edges ↔ flips edges ↔ rotations faces ↔ dissections faces ↔ Schr ¨ o der trees

  16. VARIOUS ASSOCIAHEDRA Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex ( n + 3) -gon, ordered by reverse inclusion (Pictures by Ceballos-Santos-Ziegler) Tamari (’51) — Stasheff (’63) — Haimann (’84) — Lee (’89) — . . . — Gel’fand-Kapranov-Zelevinski (’94) — . . . — Chapoton-Fomin-Zelevinsky (’02) — . . . — Loday (’04) — . . . — Ceballos-Santos-Ziegler (’11)

  17. THREE FAMILIES OF REALIZATIONS SECONDARY LODAY’S CHAP.-FOM.-ZEL.’S POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON � � ❅ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ α 2 ❅ (Pictures by CFZ) � � ❅ ✂✂ ❇ ❇ ❅ ❇ ❅ ✂ ❇ ❅ ✂ α 2 + α 3 ❇ ❅ ✂ ❇ ❅ α 1 + α 2 ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ✂ α 1 + α 2 + α 3 ✂ ✂ ✂ ✂ α 3 ❅ ❅ ✂ ❅ ✂ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ � � ❅ ✂ α 1 � � � � Gelfand-Kapranov-Zelevinsky (’94) Loday (’04) Chapoton-Fomin-Zelevinsky (’02) Billera-Filliman-Sturmfels (’90) Hohlweg-Lange (’07) Ceballos-Santos-Ziegler (’11) Hohlweg-Lange-Thomas (’12)

  18. THREE FAMILIES OF REALIZATIONS SECONDARY LODAY’S CHAP.-FOM.-ZEL.’S POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON � � ❅ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ α 2 ❅ (Pictures by CFZ) � � ❅ ✂✂ ❇ ❇ ❅ ❇ ❅ ✂ ❇ ❅ ✂ α 2 + α 3 ❇ ❅ ✂ ❇ ❅ α 1 + α 2 ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ❅ � ✂ ✂ ✂ α 1 + α 2 + α 3 ✂ ✂ ✂ ✂ α 3 ❅ ❅ ✂ ❅ ✂ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ � � ❅ ✂ α 1 � � � � Gelfand-Kapranov-Zelevinsky (’94) Loday (’04) Chapoton-Fomin-Zelevinsky (’02) Billera-Filliman-Sturmfels (’90) Hohlweg-Lange (’07) Ceballos-Santos-Ziegler (’11) Hohlweg-Lange-Thomas (’12) �❍❍❍❍ � � � ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ α 2 ✁ ❆ ❍ Hopf ❆ 2 α 2 + α 3 ✁ � ❅ ❆ � Cluster ❍ ❅ ❍ ✁ ❍ � ❅ algebra ✁ ❅ ✁ algebras α 1 + α 2 ❅ ✁ ❅ ✁ ❍ ❍ α 2 + α 3 ✁ ❍ ❅ Cluster ✁ ✁ ❇ � ✁ ✁ ❇ � 2 α 1 + 2 α 2 + α 3 ✁ ✁ ❇ � algebras ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ � ✁ ✁ ❇ � ❍ � ❍ ✁ ❅ ❍ ✁ ❅ � α 3 � ❍ ❍ ✁ ❅ � � α 1 ❅ ✁ ❅ ✁ � ❅ ✁ � �

  19. SECONDARY POLYTOPES

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend