making a many colored processing engine signal processing
play

Making A Many-Colored Processing Engine: Signal Processing with - PowerPoint PPT Presentation

Making A Many-Colored Processing Engine: Signal Processing with Optical Filters Christi K. Madsen Texas A&M University cmadsen@ee.tamu.edu Outline: The Toolbox Optical filter theory & architectures The Engine Practical


  1. Making A Many-Colored Processing Engine: Signal Processing with Optical Filters Christi K. Madsen Texas A&M University cmadsen@ee.tamu.edu Outline: • The Toolbox … Optical filter theory & architectures • The Engine … Practical implementations • The Road … High-bitrate System Applications

  2. A Bandwidth Perspective … over 10 Orders of Magnitude! Voice, kb/s Intra-channel modems (e.g. per-channel) Cable & Wireless <5 kHz Inter-channel MHz (e.g. mux/demux) Wavelength Division Optical Multiplexing (WDM) GHz Fiber Per channel rate limits: • electronics >50 THz • mux/demux • impairments

  3. Filter Applications in Optical Fiber Systems Gain Dispersion Add/Drop Equalizer Compensator Demultiplexer Demultiplexer Multiplexer Multiplexer τ(λ) A/D Amplifier Fiber dBm Tx Rx 1530 1560 2.5 → 10 → 40 Gb/s →160 100’s 1000’s km channels

  4. Wavelength-Agile Optical Networks λ -Router λ -Router λ -Router λ -Router λ -Router λ -Router Tunable Optical Bandwidth Processing!

  5. Interference ⇔ Digital Filters Optical Filters Split → Delay → Weight → Combine b 0 X(z) Y(z) Splitter Combiner ∆ L + z -1 b 1 Directional Couplers X(z) Y(z) + Γ z -1 a 1 partial reflectors a unit Z transform z − 1 ~ delay − β − ⇒ j L 1 e z

  6. A Simple Splitter ( ) θ cos Directional Y Coupler X 1 1 θ=κ c L c where X Y 2 2 ( ) − θ j sin L O M O L b g b g PL M O θ − θ Y cos j sin X M P = P 1 1 b g b g N Q N Q N Q − θ θ Y j sin cos X 2 2 Coherent Interference Field transmission coefficients.

  7. Mach-Zehnder Interferometer Feed-forward interference ⇒ single-stage FIR φ − = − All-zero 1 ∆ L H c c z s s − 1 2 1 2 transfer c h − x = − 1 + H j c s z s c functions 1 2 1 2 Free Spectral Range c = path length FSR ∆ difference n L g normalized frequency

  8. Single-stage Optical IIR Filters Fabry-Perot etalon Ring resonator R=L/2 π partial reflectors Unit Delay = T n L / c g Free Spectral Range = FSR 1 / T normalized frequency

  9. Optical Allpass Filters Optical Allpass Filters Ring Resonator Gires-Tournois Interferometer L=2 π R L / 2 φ R − j κ ρ 1 < ρ 0 ≅ 1 1 Free Spectral Range ρ = − 1 k Unit Delay = = FSR 1 / T − j k T n L / c g For a lossless filter, magnitude response = 1 (allpass!)

  10. Phase and Group Delay Response Phase and Group Delay Response ρ = − 1 k − j k Scaling: physical Scaling: physical τ 2 d   T Dispersion = g = −  D c D  n λ λ d  

  11. Dispersion via Taylor Series Expansion b g b g 1 1 β Ω + ∆Ω ≈ β Ω + β ′ ∆Ω + β ′′ ∆Ω + β ′′′ ∆Ω + 2 3 � c c 2 ! 3 ! Cubic Quadratic Delay Phase dispersion dispersion Φ d Φ = − β L τ ≡− Ω g d τ d Dispersion ≡ g D (ps/nm) λ d

  12. Bandwidth Utilization in WDM Systems Channel spacing Signal bandwidth filter Power response 10% 40% 80% spectral efficiency Frequency Typical: 50 or 100 GHz grid Hi Spectral Efficiency → Challenging Filters

  13. Single → Multi-stage Filter Architectures 2x2 FIR Lattice Filter φ φ ∆ L ∆ L Jinguji, JLT (1995) Generalized Mach-Zehnder (optical phased array) 1xN NxN

  14. Arrayed Waveguide Grating (AWG) Ideally Dispersion-free! G. Lenz G. Lenz Vellekoop and Smit, JLT (1991) Takahashi, EL (1990) Dragone, PTL (1991)

  15. IIR Multi-stage Filter Architectures Single-pole filter - Marcatili, BSTJ, p. 2103, 1969 Arbitrary pole locations - Orta, et al., PTL, p.1447, 1995 - Madsen & Zhao, JLT, p. 437, 1996 - Little, et al, JLT, p. 998, 1997 φ 1r φ 2r φ 3r φ 4r Arbitrary pole & zero locations κ 1r κ 2r κ 3r κ 4r κ 1t κ 2t κ 3t κ 4t κ 0t - Jinguji, JLT, p. 1882, 1996 φ 1t φ 2t φ 3t φ 4t φ 1 φ 2 φ 3 κ 1 κ 2 κ 3 Simplified pole/zero filter κ =0.5 κ =0.5 - Madsen, PTL, 1998 κ 2 κ 1 κ 3 Use allpass filter decomposition to realize optimal bandpass designs φ 2 φ 3 φ 1 * * * efficiently!

  16. Multi-stage Filter Synthesis Design: Desired Frequency Response → Filter Parameters • Approximation problem (Taylor series, least squares, min-max) • Choose filter class, architecture, number of stages, FSR Bandpass filter cutoff=0.1

  17. Building the engine … In theory, there is no difference between theory and practice. But, in practice, there is. -- Jan L.A. van de Snepscheut

  18. Optical versus Digital filters Property Digital Filters Optical Filters • Gain - expensive and adds noise Gain/Loss Gain is free • Loss changes filter response • Fabrication variations Coefficient quantization • Wavelength, polarization, sensitivity errors temperature, aging use real Real vs. coefficients to complex coefficients complex avoid complex are easily realized coefficients computations

  19. Allpass Filter Magnitude Response Allpass Filter Magnitude Response • For a lossless filter, magnitude response = 1 (allpass!) • With loss, magnitude response depends on ρ φ L=2 π R R κ X Y ρ = − κ 1 − → − γ 1 1 z z − b g = ρ − γ 1 z H z − ρ γ − 1 1 z

  20. Silica Planar Waveguides Lucent Technologies Bell Labs Innovations Very low loss! Mature fabrication processes! – Large-volume manufacturable – Large-scale integration – Realize complex filter and switch architectures – Low-loss thermo-optic tuning for dynamic optical routing & adaptive processing – Excellent platform for hybrid integration Collaborators: M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-foy

  21. Silica-on-Silicon Planar Waveguides

  22. heater Cross-Section and upper cladding Definitions core lower cladding Si substrate Phase shifter Cladding Waveguide Waveguide core − n n ∆ ≡ core clad 2 + n n core clad Substrate

  23. Mach-Zehnder interferometer Vary phase in one arm relative to the other Variable coupler Variable attenuator 1x2 and 2x2 switch M. Earnshaw M. Earnshaw

  24. Planar Waveguide Design: Bend Radius Phase Shifter • Large FSR ⇒ Large ∆ ! c φ r = • Precise coupling ratios FSR n L R g κ r L C • Fiber-waveguide FSR L coupling loss ↑ (GHz) (mm) • thermal 8 25 crosstalk ↑ 12.5 16 25 8 50 4 100 2 = π + L 2 R 2 L C

  25. Micro-ring Resonator Filters SEM of Gap Higher Order Filters Tunable 5 th Order µ ring filter 5 th Order Little, OFC’03

  26. Common Material Systems for Integrated Optics Index of Typical waveguide Loss (dB/cm) refraction cross section @ 1550 nm @ 1550 nm P:SiO 2 SiO 2 1.45 0.02 Silica (SiO 2 ) Waveguide Si mode InP InGaAsP Indium phosphide (InP) 3.2 0.2, 2 InP , ... , Ti:LiNbO 3 2.3 0.5 LiNbO 3 Lithium niobate (LiNbO 3 ) Si 3.5 0.1 SiO 2 Silicon-on-insulator (SOI) Si 1.5 0.1 Polymer Polymer Si C. Doerr C. Doerr

  27. Common phase shifters Mechanism Chrome Temp. dependence of Silica (SiO 2 ) refractive index Thermooptic Gold Forward bias: p Carrier density change Polyimide Indium phosphide (InP) i Reverse bias: Carrier density change Electrooptic n n , & Pockels Gold Lithium niobate (LiNbO 3 ) Pockels Electrooptic Silicon (Si) Current Injection C. Doerr C. Doerr

  28. Chromatic Dispersion Tolerance 10Gb/s NRZ Eye Diagram inter-symbol interference (ISI) 0 km tolerance scales 0 ps/nm as 1/(bitrate)^2 Example: ~1dB system penalty 50 km 850 ps/nm 10 Gb/s D=±800 ps/nm 40 Gb/s D=±50 ps/nm! 160 Gb/s D=±3 ps/nm!!! 100 km 1700 ps/nm ⇒ Tunable dispersion compensation Fiber +17 ps/nm/km

  29. Test Drive … Tunable Dispersion Compensators Periodic Delay Constant Dispersion Across Passband 100GHz 80GHz key for λ -agile networks! (per channel, any channel)

  30. Multi-Stage Group Delay Phase φ 1 φ Ν Shifter κ 1 κ N In ... Out Nonlinear design optimization • bandwidth utilization • dispersion • group delay ripple Favors High Spectral Efficiency! Theoretically lossless Precisely tune two variables/stage Madsen & Lenz, PTL ‘98 US Patent 6289151

  31. Tunable Allpass Filter Architecture Basic Design Phase Shifter φ r R ρ = 1 − κ r κ r In Out Tunable Design Asymmetric MZI Symmetric MZI φ m φ m φ r φ r Phase Shifter b g = a f b g a f ϕ ρ φ ρ ϕ λ j j ρ φ λ = ρ λ e , e m m

  32. Tunable Ring Dispersion Compensators Tunable constant Tunable constant Tunable Allpass Designs Fabrication tolerances Fabrication tolerances φ m dispersion or dispersion or greatly reduced greatly reduced φ m Phase Shifter dispersion slope dispersion slope (insensitive to (insensitive to κ κ compensators compensators coupling ratios) coupling ratios) κ κ φ r φ r Dispersion Constant Dispersion Slope Madsen, et al, IPR’99

  33. 40Gb/s Compensator* with 280 ps/nm Tuning CSRZ Passband=60 GHz FSR=75 GHz N=4, BWU=80% Back-to-back NRZ back-to-back TDC=0 ps/nm Fiber=+100 TDC=0 TDC=+100 ps/nm Fiber=+100 TDC=-115 TDC=-100 ps/nm *with 50 GHz bandlimiting filter Madsen, et al, OFC’02 PD

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend