magnon bose einstein condensation
play

Magnon Bose Einstein Condensation a brief introduction Dec. 21 st - PowerPoint PPT Presentation

Introduction to Spintronics --- 2018 Fall Magnon Bose Einstein Condensation a brief introduction Dec. 21 st 2018 1 After this presentation, you are supposed to have some basic understanding


  1. Introduction to Spintronics --- 2018 Fall Magnon Bose Einstein Condensation a brief introduction Dec. 21 st 2018 何梦云 李思衡 李娜 孙慧敏 陈文杰 1

  2. After this presentation, you are supposed to have some basic understanding of: • What is magnon BEC? • Why is it so special? • How to achieve it? • Several experiments . 2

  3. Bose Einstein Condensation 3

  4. Bose Einstein Condensation If the total particle number N is fixed, the chemical potential has a finite value. BEC 4

  5. Bose Einstein Condensation If the total particle number N is NOT fixed, the chemical potential is always zero! Why? 5

  6. Bose Einstein Condensation 6

  7. Bose Einstein Condensation If the total particle number N is NOT fixed, the chemical potential is always zero! no BEC 7

  8. Magnon magnon spin wave (boson s = 1) no BEC 8

  9. R.I.P. magnon BEC 9

  10. Magnon BEC Last hope: raise the chemical potential. But how? 10

  11. Magnon BEC Defined at thermal equilibrium , But at thermal equilibrium … What happens beyond thermal equilibrium? 11

  12. Magnon create magnons destroy magnons scattering heating cooling magnon’s life oscillating dissipation magnetic field into lattice 12

  13. Magnon scattering into equilibrium : dissipation into lattice : �� �� quasi-equilibrium 13

  14. Magnon BEC YIG film V. E. Demidov et al ., Phys. Rev. Lett. 100 , 047205 (2008). V. E. Demidov et al ., Phys. Rev. Lett. 101 , 257201 (2008). 14

  15. Magnon BEC YIG film O. Dzyapko et al ., Appl. Phys. Lett. 92 , 162510 (2008). 15

  16. Magnon BEC YIG film O. Dzyapko et al ., Appl. Phys. Lett. 92 , 162510 (2008). 16

  17. First experimental discovery of mBEC 17

  18. Magnon BEC  magnons FM material + � + pumping � � ��� = � ��� → BEC ① microwave electromagnetic field—density of magnon ② � �� > 1�� , � �� < 100�� — quasi-equilibrium ③ transparent for visible light 18

  19. Experimental set-up Detection: Brillouin light scattering (BLS) Demokritov S O. et al. Nature, 2006, 443(7110):430-433. Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64. 19

  20. Dispersion curve � ��� −� � � � Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64. 20

  21. BLS spectrum without pumping ~ v D ( ) � � � � � ��� � � = � � � � = ���� �� � − 1 � − 1 � � � � � � � � Demokritov S O. et al. Nature, 2006, 443(7110):430-433. 21

  22. BLS spectrum with pumping Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64. 22

  23. BLS spectrum with pumping  m 300ns Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64. 23

  24. BLS spectrum with pumping 0.24 0.7 P=5.9w P=4.0w 2.4 1.75 Demokritov S O. et al. Nature, 2006, 443(7110):430-433. 24

  25. BLS spectrum after pumping switch-off Dzyapko O. et al. New Journal of Physics, 2007, 9(3):64. 25

  26. 26

  27. Research about magnon-magnon interaction 2017 • Parametric pumping • Doubly degenerate mBEC   2 4 a           W ( r r ) ( r r ) g ( r r ) int m g>0, repulsive interaction; g<0, attractive interaction * * b b b b      12 i  b (  g 1 1 2 g 2 2 ) b 1 0 1 V V * * b b b b      12   2 2 1 1 i b ( g 2 g ) b 2 0 2 V V          12 ( g /  ) ( 2 g /  ) 0 27

  28. Research about magnon-magnon interaction • MOKE • Wavelength: 490nm • Duration: 100 fs • Repetition frequency ωL/(2π)=82.379MHz k BEC 28

  29. Research about magnon-magnon interaction • H 0 =113.91kA/m • A threshold • P<P th , before the condensation of magnons 29

  30. Spin current induced magnons 2017 • Spin-Hall effect • Ferromagnetic Permalloy (Py) strip+Pt • Magnetization of Py: 10.2KG • Spin current//M • Microfocus Brillouin light scattering (BLS) technique      ( ) D ( ) n ( ) ρ: spectral density of magnons • k y =πm/w 30

  31. Spin current induced magnons • H 0 =200Oe      ( ) D ( ) n ( ) thermal equilibrium 0 0      ( ) D ( ) n ( ) I I Oersted field of the current 31

  32. Spin current induced magnons    n ( ) k T / h 0 B 0      n ( ) k T /( h ) I B eff   T n ( )    eff R ( ) I     n ( ) T / h 0 0 • T eff : frequency independent scaling of R • μ: a comprehensive modulation on R(ν) 32

  33. Current induced and detected mBEC • Dissipationless magnon transport • I dc = 0, nac from the injector decays exponentially • I dc = I BEC , formation of magnon BEC • I dc = I SW , magnon damping is completely compensated 33

  34. Current induced and detected mBEC • µ 0 H = 50mT, T = 280K • � = ± 180 ◦ , magnon accumulation underneath the modulator • � =0 ◦ , magnon depletion obtained in this configuration 34

  35. Current induced and detected mBEC • Linear dependence: SHE induced injection effects • Quadratic dependence: thermal activation 35

  36. Thank you for your attentions! 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend