bose einstein condensation and a two dimensional walk
play

Bose-Einstein condensation and a two-dimensional walk model Farhad - PowerPoint PPT Presentation

Bose-Einstein condensation and a two-dimensional walk model Farhad H. Jafarpour Bu-Ali Sina University (BASU) Physics Department Hamedan Iran Collaborator: S. Zeraati F. H. Jafarpour (BASU) MPIPKS, LAFNES11 1 / 19 Motivation If we


  1. Bose-Einstein condensation and a two-dimensional walk model Farhad H. Jafarpour Bu-Ali Sina University (BASU) Physics Department Hamedan Iran Collaborator: S. Zeraati F. H. Jafarpour (BASU) MPIPKS, LAFNES11 1 / 19

  2. Motivation If we consider: 1) Driven-Diffusive Systems 2) Zero-Range Processes 3) Lattice Path Models are these three systems related? Sharing a common partition function, observable ... What is the role of the Matrix Product Ansatz? F. H. Jafarpour (BASU) MPIPKS, LAFNES11 2 / 19

  3. Outline I) Open boundary conditions PASEP Steady-state of PASEP as a superposition of single-shock measures Steady-state of PASEP as a superposition of multiple-shock measures Mapping onto a lattice path model F. H. Jafarpour (BASU) MPIPKS, LAFNES11 3 / 19

  4. Outline I) Open boundary conditions PASEP Steady-state of PASEP as a superposition of single-shock measures Steady-state of PASEP as a superposition of multiple-shock measures Mapping onto a lattice path model II) Periodic boundary conditions A simple driven-diffusive system → Mapping onto a zero-range process → Mapping onto a lattice path model A generalized driven-diffusive system → Mapping onto a zero-range process → Mapping onto a lattice path model F. H. Jafarpour (BASU) MPIPKS, LAFNES11 3 / 19

  5. PASEP Partially Asymmetric Simple Exclusion Process with open boundaries: Α Β x 1 x 1 1 2 N � 1 N Γ ∆ F. H. Jafarpour (BASU) MPIPKS, LAFNES11 4 / 19

  6. PASEP Partially Asymmetric Simple Exclusion Process with open boundaries: Α Β x 1 x 1 1 2 N � 1 N Γ ∆ x 1 − d = κ + ( β, δ ) κ + ( α, γ ), d = 1 , 2 , 3 , · · · A κ + ( u , v ) = − u + v +1+ √ 1 ( u − v − 1) 2 +4 uv C 2 u B 0 1 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 4 / 19

  7. Steady-state of PASEP For d = 2 the steady-state can be written as a linear superposition of single-shock measures with random walk dynamics: � 1 − ρ 1 � 1 − ρ 2 � ⊗ k � ⊗ N − k | k � = ⊗ ρ 1 ρ 2 A shock: ρ 2 ρ 1 1 k N F. H. Jafarpour (BASU) MPIPKS, LAFNES11 5 / 19

  8. Steady-state of PASEP For d = 2 the steady-state can be written as a linear superposition of single-shock measures with random walk dynamics: � 1 − ρ 1 � 1 − ρ 2 � ⊗ k � ⊗ N − k | k � = ⊗ ρ 1 ρ 2 A shock: ρ 2 ρ 1 1 k N The steady-state can also be obtained using the matrix product method: N | P ∗ � = 1 � c k | k � Z N k =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 5 / 19

  9. Steady-state of PASEP For d = 2 the steady-state can be written as a linear superposition of single-shock measures with random walk dynamics: � 1 − ρ 1 � 1 − ρ 2 � ⊗ k � ⊗ N − k | k � = ⊗ ρ 1 ρ 2 A shock: ρ 2 ρ 1 1 k N The steady-state can also be obtained using the matrix product method: � E N � ⊗ N | P ∗ � = 1 c k | k � = 1 � �� W | | V �� Z N Z N D k =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 5 / 19

  10. Steady-state of PASEP The partition function of the system: N � c k = �� W | ( D + E ) N | V �� Z N = k =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 6 / 19

  11. Steady-state of PASEP The partition function of the system: N � c k = �� W | ( D + E ) N | V �� Z N = k =0 The matrix representation for d = 2: � (1 − ρ 1 ) � ρ 1 � � − d 0 d 0 E = , D = δ l δ l δ r (1 − ρ 2 ) 0 0 δ r ρ 2 δ δ r l ρ 2 ρ 1 1 k N Question! F. H. Jafarpour (BASU) MPIPKS, LAFNES11 6 / 19

  12. PASEP mapped onto a lattice path model The lattice path model is defined on a rotated square lattice as follows: Assign the weight δ r δ l to each upward step Assign the weight 1 to each downward step except those steps which end on the horizontal axis. F. H. Jafarpour (BASU) MPIPKS, LAFNES11 7 / 19

  13. PASEP mapped onto a lattice path model The lattice path model is defined on a rotated square lattice as follows: Assign the weight δ r δ l to each upward step Assign the weight 1 to each downward step except those steps which end on the horizontal axis. Z N = � L | T N | R � F. H. Jafarpour (BASU) MPIPKS, LAFNES11 7 / 19

  14. PASEP mapped onto a lattice path model The lattice path model is defined on a rotated square lattice as follows: Assign the weight δ r δ l to each upward step Assign the weight 1 to each downward step except those steps which end on the horizontal axis. Z N = � L | T N | R � Z N = �� W | ( D + E ) N | V �� • F. H. Jafarpour and S. Zeraati, PRE 81 (2010). F. H. Jafarpour (BASU) MPIPKS, LAFNES11 7 / 19

  15. PASEP mapped onto a lattice path model For an arbitrary d : x 1 − d = κ + ( β, δ ) κ + ( α, γ ) one can define a multiple-shock measure: ρ d . . · · · . ρ 2 ρ 1 1 i 1 i 2 i d − 1 N which shares a common partition function with a multiple-transit lattice path: �❅�❅ �❅�❅�❅ �❅�❅ ❅� ❅�❅� (0 , 0) (2 N , 0) • F. H. Jafarpour and S. Zeraati, PRE 82 (2010). F. H. Jafarpour (BASU) MPIPKS, LAFNES11 8 / 19

  16. A simple disordered DDS A disordered Driven Diffusive System (DDS) defined on a lattice of length N consisting of M − 1 first-class particles in the presence of a second-class particle. 1 � � � 1 � � � � N 1 � � � 1 2 � � 3 � � � � � p 1 ∅ → ∅ 1 with rate 1 2 ∅ → ∅ 2 with rate p F. H. Jafarpour (BASU) MPIPKS, LAFNES11 9 / 19

  17. A simple disordered DDS A disordered Driven Diffusive A Zero Range Process (ZRP) System (DDS) defined on a defined on a lattice of length lattice of length N consisting M consisting of N − M of M − 1 first-class particles in particles. The particles in the the presence of a second-class first box leave it with the rate particle. p . 1 � 1 p � � 1 � � 1 � � N 1 1 � � � 1 2 � � 3 1 2 3 4 5 � � � � � p 1 ∅ → ∅ 1 with rate 1 2 ∅ → ∅ 2 with rate p • M. R. Evans EPL (1996). F. H. Jafarpour (BASU) MPIPKS, LAFNES11 9 / 19

  18. A simple disordered DDS Steady-state as a matrix product state 2 ∅ ∅ ∅ 1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1 · · · 1 ∅ ∅ ∅ ∅ ∅ 1 ���� � �� � � �� � n 1 n 2 n M 1 Tr ( D ′ E n 1 DE n 2 · · · DE n M ) P ( { n 1 , n 2 , · · · , n M } ) = Z N , M D ′ → 2 , D → 1 , E → ∅ F. H. Jafarpour (BASU) MPIPKS, LAFNES11 10 / 19

  19. A simple disordered DDS Steady-state as a matrix product state 2 ∅ ∅ ∅ 1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1 · · · 1 ∅ ∅ ∅ ∅ ∅ 1 ���� � �� � � �� � n 1 n 2 n M 1 Tr ( D ′ E n 1 DE n 2 · · · DE n M ) P ( { n 1 , n 2 , · · · , n M } ) = Z N , M D ′ → 2 , D → 1 , E → ∅ These operators satisfy a quadratic algebra: pD ′ E = D ′ , DE = D . The matrix representation of this algebra is: ∞ ∞ ∞ � � � D ′ = p − i | 0 �� i | , D = | 0 �� i | , E = | i + 1 �� i | i =0 i =0 i =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 10 / 19

  20. A simple disordered DDS Canonical partition function M � � n i − N + M ) Tr ( D ′ E n 1 DE n 2 · · · DE n M ) Z N , M ( p ) = δ ( i =1 { n i } � N − i − 2 N − M � � p − i = M − 2 i =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 11 / 19

  21. A simple disordered DDS Canonical partition function M � � n i − N + M ) Tr ( D ′ E n 1 DE n 2 · · · DE n M ) Z N , M ( p ) = δ ( i =1 { n i } � N − i − 2 N − M � � p − i = M − 2 i =0 Two phases: Bose-Einstein condensation! Depending on the values of p and ρ = M N the system has two phases:  O ( N ) for p < 1 − ρ,  � n 1 � ≃  O (1) for p > 1 − ρ. • M. R. Evans EPL (1996). • M. R. Evans and T. Hanney JPA (2005). F. H. Jafarpour (BASU) MPIPKS, LAFNES11 11 / 19

  22. A simple disordered DDS Question! Is there an equivalent lattice path model? F. H. Jafarpour (BASU) MPIPKS, LAFNES11 12 / 19

  23. A simple disordered DDS Question! Is there an equivalent lattice path model? An equivalent lattice path model A lattice path model defined on Z 2 + = { ( i , j ) : i , j ≥ 0 are integers } . From ( i , j ) to ( i + 1 , j + 1) with a weight 1 p . From ( i , j ) to ( i + 1 , 0) with a weight zp j . F. H. Jafarpour (BASU) MPIPKS, LAFNES11 12 / 19

  24. A simple disordered DDS Question! Is there an equivalent lattice path model? An equivalent lattice path model A lattice path model defined on Z 2 + = { ( i , j ) : i , j ≥ 0 are integers } . From ( i , j ) to ( i + 1 , j + 1) with a weight 1 p . From ( i , j ) to ( i + 1 , 0) with a weight zp j . j A transfer matrix T can be defined: 4 3 T | j � = zp j | 0 � + 1 p | j + 1 � 2 1 z ( z +1) N − j − 2 T N − 1 | 0 � = � N − 2 1 | j � + p N − 1 | N − 1 � j =0 p j 5 i 1 2 3 4 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 12 / 19

  25. A simple disordered DDS The grand-canonical partition function of the model: � N − j − 2 ∞ N − 1 N − i − 1 � 1 � � � p − j z i + � j | T N − 1 | 0 � = Z N ( p , z ) = i − 1 p N − 1 j =0 i =1 j =0 F. H. Jafarpour (BASU) MPIPKS, LAFNES11 13 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend