m
play

M Institut de Recherche en G nie C ivil et M canique , N. - PowerPoint PPT Presentation

Context and tool box Theoritical development Numerical example Conclusion and upcoming Inequality level set for contact A new coupled X-FEM/ Level-Set strategy to solve contact problems Nicolas Chevaugeon, Matthieu Graveleau, Nicolas Mos


  1. Context and tool box Theoritical development Numerical example Conclusion and upcoming Inequality level set for contact A new coupled X-FEM/ Level-Set strategy to solve contact problems Nicolas Chevaugeon, Matthieu Graveleau, Nicolas Moës from: GeM, Nantes (FRANCE) for ICCCM 2013 07/12/2013 G M Institut de Recherche en G énie C ivil et M écanique , N. Chevaugeon ILS for contact

  2. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 2 ⁄ 28 Context and tool box 1 2 Theoritical development Numerical example 3 Conclusion and upcoming 4 , N. Chevaugeon ILS for contact

  3. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique Summary 3 ⁄ 28 1 Context and tool box 2 Theoritical development 3 Numerical example 4 Conclusion and upcoming , N. Chevaugeon ILS for contact

  4. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 4 ⁄ 28 Contact is an active research domain! Several studies and methods : ◮ theoretical * , ◮ practical † . Still studied, why? ◮ multiple contact zones, ◮ represent discontinuities. * . † . , N. Chevaugeon ILS for contact

  5. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 4 ⁄ 28 Contact is an active research To contact or not to contact, that domain! is the question? y Several studies and methods : undeformable ◮ theoretical * , ◮ practical † . x z imposed Still studied, why? efforts ◮ multiple contact zones, deformable ◮ represent discontinuities. * . † . , N. Chevaugeon ILS for contact

  6. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 5 ⁄ 28 y First let’s agree on some notations : x ◮ Ω domain, z ◮ ∂Ω its frontier, f ∂ Ω t ◮ ∂Ω c the part in contact, Ω ◮ Γ c its boundary, ∂ Ω u ◮ ∂Ω t imposed effort t d , Γ c ◮ ∂Ω u imposed displacement u d , ∂ Ω c ◮ f volumic forces , N. Chevaugeon ILS for contact

  7. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique y 6 ⁄ 28 Our original problem : x z ∂ Ω c ◮ what is the equilibrium state? ( u, σ ) ◮ what is the contact zone? Hard to solve! , N. Chevaugeon ILS for contact

  8. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique y 6 ⁄ 28 Our original problem : x z ∂ Ω c ◮ what is the equilibrium state? ( u, σ ) ◮ what is the contact zone? y Hard to solve! Idea : split the problem x z ∂ Ω c ◮ solve elastic problem guessing ∂Ω c , ( u, σ ) ◮ find ∂Ω c which verifies the contact conditions. y ⇒ iterative process x z ∂ Ω c ( u, σ ) , N. Chevaugeon ILS for contact

  9. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique y 6 ⁄ 28 Our original problem : x z ∂ Ω c ◮ what is the equilibrium state? ( u, σ ) ◮ what is the contact zone? y Hard to solve! Idea : split the problem x z ∂ Ω c ◮ solve elastic problem guessing ∂Ω c , ( u, σ ) ◮ find ∂Ω c which verifies the contact conditions. y ⇒ iterative process Question : how to make ∂Ω c evolve? x z ∂ Ω c ( u, σ ) , N. Chevaugeon ILS for contact

  10. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? , N. Chevaugeon ILS for contact

  11. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? , N. Chevaugeon ILS for contact

  12. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? , N. Chevaugeon ILS for contact

  13. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? , N. Chevaugeon ILS for contact

  14. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? , N. Chevaugeon ILS for contact

  15. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? Criteria : ◮ good representation of Γ c and the phenomena on it, ◮ having a criterion for the “good position” of the contact zone, ◮ fast convergence, ◮ adaptability. , N. Chevaugeon ILS for contact

  16. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 7 ⁄ 28 Question : what does our method need to do in order to make ∂Ω c evolve? * Criteria : ◮ good representation of Γ c and the phenomena on it, level-set/XFEM ◮ having a criterion for the “good position” of the contact zone, configurational mechanic ◮ fast convergence, configurational mechanic ◮ adaptability. level-set * . , N. Chevaugeon ILS for contact

  17. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 8 ⁄ 28 Φ ≥ 0 level-set * signed function : Γ c Φ ≤ 0 φ ( x ) = ± min x c ∈ Γ c � x c − x � (1) thus the iso-zero level-set represents Γ c = { x / φ ( x ) = 0 } * . † . ‡ . , N. Chevaugeon ILS for contact

  18. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 8 ⁄ 28 level-set * XFEM † signed function : exploits partition of unity ‡ : φ ( x ) = ± min x c ∈ Γ c � x c − x � (1) → take into account discontinuities on Γ c → differentiate contact or non thus the iso-zero level-set represents Γ c = { x / φ ( x ) = 0 } contact domain * . † . ‡ . , N. Chevaugeon ILS for contact

  19. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique Summary 9 ⁄ 28 1 Context and tool box 2 Theoritical development 3 Numerical example 4 Conclusion and upcoming , N. Chevaugeon ILS for contact

  20. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 10 ⁄ 28 Hypothesis ◮ elastic linear material Strong formulation for 2 bodies ◮ small displacement ◮ div σ + f = 0 in Ω ◮ frictionless contact ◮ u KA and σ SA with σ = C ε Ω 1 Karush-Kuhn-Tucker(KKT) conditions : ◮ ( x 2 − x 1 ) · n 1 � 0 on Γ c ◮ F n 1 = − F n 2 � 0 on Γ c n 1 ◮ ( x 2 − x 1 ) · n 1 F n 1 = 0 on Γ c Ω 2 , N. Chevaugeon ILS for contact

  21. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 11 ⁄ 28 Variationnal formulation * Find u KA + CC a ( u , v ) − l ( v ) � 0 ∀ v KA 0 (2) with : � ◮ a ( u , v ) = Ω σ : ε ( v ) d Ω � � Ω f ( v ) d Ω + t d v d Γ ◮ l ( v ) = Γ t → variational inequality * . , N. Chevaugeon ILS for contact

  22. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique 11 ⁄ 28 Variationnal formulation * If ∂Ω c is given we can relax the inequality with Lagrange multipliers (2) becames : Find u KA and λ ∈ Λ such as : � a ( u , v )+ b ( λ , v ) − l ( v ) = 0 ∀ v KA 0 b ( q , u ) = l b ( q ) ∀ q ∈ Λ Thus we will have a solution which fulfills the static and kinematic conditions but not the contact conditions. * . , N. Chevaugeon ILS for contact

  23. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique Evolution of the interface 12 ⁄ 28 To fulfill the contact conditions − → find the right ∂Ω c . Γ k Γ exact c c , N. Chevaugeon ILS for contact

  24. Context and tool box Theoritical development Numerical example Conclusion and upcoming G M Institut de Recherche en G énie C ivil et M écanique Evolution of the interface 12 ⁄ 28 Let’s define a positioning criteria g such as : g ( x ) = 0 on Γ c if Γ c = Γ ex c g ( x ) � = 0 Γ k Γ k +1 Γ exact c c c , N. Chevaugeon ILS for contact

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend