m estimation in inarch models
play

M-Estimation in INARCH Models with a special focus on small means - PowerPoint PPT Presentation

19th International Conference on Computational Statistics, Paris, August 22nd-27th 2010 M-Estimation in INARCH Models with a special focus on small means Hanan El-Saied, Roland Fried Department of Statistics TU Dortmund Germany 1 Contents


  1. 19th International Conference on Computational Statistics, Paris, August 22nd-27th 2010 M-Estimation in INARCH Models with a special focus on small means Hanan El-Saied, Roland Fried Department of Statistics TU Dortmund Germany 1

  2. Contents • Motivation: Outliers in IN(G)ARCH models • M-estimation for i.i.d. Poisson data • M-estimation for INARCH-model • Bias correction • Outlook 2

  3. Motivation: Number of Campylobacterosis Infections 50 40 30 number 20 10 0 0 20 40 60 80 100 120 140 time (4 week periods)      INGARCH-model : Y ~ Poi  Ferland, Latour, Oraichi (2006) t Y , s t t s         Y   t 0 1 t 13 1 t 1 Level shift at time 84, outlier pattern at time 100 Fokianos, F. (2010) 3

  4. ● M-estimation of location  for i.i.d. data     n n     y y t t            Minimize         t 1 t 1    e.g. log f gives ML-estimator 4

  5. ● M-estimation of location  for i.i.d. data     n n     y y t t            Minimize         t 1 t 1    e.g. log f gives ML-estimator Huber  -function Tukey  -function 3 2 psi-function 2 psi-function 1 1 -3 -2 -1 0 0 -1 -2 -4 -2 0 2 4 x -4 -2 0 2 4 x 2     2 x , | x | k   x             ( x )   ( x ) x 1 I | x | k k   k    k sign ( x ), | x | k   k   5

  6. M-estimation for i.i.d. Poisson data Modified Huber  -function with bias correction     y a      , | y a | k      ( y , ) k , a           k sign ( y a ), | y a | k     with a=a(  ) such that    E Y , 0  Simpson et al. (1987) k , a 1 6

  7. M-estimation for i.i.d. Poisson data Modified Huber  -function with bias correction     y a      , | y a | k      ( y , ) k , a           k sign ( y a ), | y a | k     with a=a(  ) such that    E Y , 0  Simpson et al. (1987) k , a 1 Modified Tukey  -function with bias correction 2   2               y y y 2                 ( y , ) a k a I a k         k , a            Initialization by sample median or by estimating P  (Y=0) 7

  8. Efficiencies: asymptotic and sample size n=50 Asymptotic efficiency of Finite sample efficiency of Huber M-est. for several k Huber & Tukey M-est., n=50 1.00 .8 1.0 asymptotic efficiency relative efficiency .95 .6 .90 .4 .85 .2 .80 .0  0 5 10 15 20 25 0 5 10 15 20 25 huberM (robustbase), k=1.8 k=1 k=2 glmrob, k=1.8 Tukey, k=5 Tukey, k=6 Cadigan & Chen (2001) Tukey, adaptive k 8

  9. Efficiencies: asymptotic and sample size n=50 Asymptotic efficiency of Finite sample efficiency of Huber M-est. for several k Huber & Tukey M-est., n=50 1.00 .8 1.0 asymptotic efficiency relative efficiency .95 .6 .90 .4 .85 .2 .80 .0  0 5 10 15 20 25 0 5 10 15 20 25 huberM (robustbase), k=1.8 k=1 k=2 glmrob, k=1.8 Tukey, k=5 Tukey, k=6 Cadigan & Chen (2001) Tukey, adaptive k 9

  10. Robustness for  =0.5 and  =5 Efficiency relatively to sample mean in case of increasing number of outliers of increasing size, n=50, log-scale 1000 1000 relative efficiency relative efficiency 100 100 10 10 1 1 0.1 0.1 0 5 10 15 20 0 5 10 15 20 number and size of outliers number and size of outliers huberM (robustbase), k=1.8 glmrob, k=1.8 Tukey, k=5 Tukey, k=6 Tukey, adaptive k 10

  11. ● Conditional likelihod estimation for INARCH              INARCH-model :  Y ~ Poi , Y Y    t Y , s t t t 0 1 t 1 p t p s Conditioning on first p observations y 1 , …, y p :     1 0         n y     y 1 t 1 t t               t t t p 1       y      0 t p 11

  12. ● Conditional likelihod estimation for INARCH              INARCH-model :  Y ~ Poi , Y Y    t Y , s t t t 0 1 t 1 p t p s Conditioning on first p observations y 1 , …, y p :     1 0         n y     y 1 t 1 t t               t t t p 1       y      0 t p   1   M-estimation:     y   t 1               ,  2 marginal     y    t t         mean & variance t       y  t p               12

  13. Efficiencies: INARCH(1),  0 =1,several  1 , n=100 Efficiency for  1 Efficiency for  0 .0 .2 .4 .6 .8 1.01.2 .0 .2 .4 .6 .8 1.01.2 relative efficiency relative efficiency  1 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 Huber, k=1.8, Huber, k=2.5 Tukey, k=5, Tukey, k=7 Tukey, adaptive k 13

  14. Robustness: INARCH(1) with  0 =1,  1 =.4 Increasing number k of outliers of size k at end of time series Bias for  0 .1 .0 bias -.1 -.2 -.3 0 5 10 15 20 number and size of outliers Conditional ML Huber, k=1.8, Huber, k=2.5 Tukey, k=5, Tukey, k=7 Tukey, adaptive k 14

  15. Robustness: INARCH(1) with  0 =1,  1 =.4 Increasing number k of outliers of size k at end of time series Bias for  1 Bias for  0 .1 .5 .4 .0 bias bias .3 -.1 .2 -.2 .1 -.3 .0 0 5 10 15 20 0 5 10 15 20 number and size of outliers number and size of outliers Conditional ML Huber, k=1.8, Huber, k=2.5 Tukey, k=5, Tukey, k=7 Tukey, adaptive k 15

  16. ● Bias correction for INARCH(p) model M-estimator with bias correction:     1             a 0 y  0    t 1                     n          y 1  t t                         t t   t p 1           y      t p          a   0     p          with a o ,…, a p depending on  0 , …,  p such that expectation of left hand side equals 0. 16

  17. Bias for INARCH(1) in dependence on  1 n=100 .3 .2 Bias  0 .1 Conditional ML .0 Tukey, k=7 -.1  1 Tukey, k=5 .1 .3 .5 .7 .9 Tukey, k=5, corrected .04 -.04 -.02 .00 .02  1 Bias  1 .1 .3 .5 .7 .9 17

  18. Bias for INARCH(1) in dependence on  1 n=200 n=100 .3 .3 .2 .2 Bias Bias  0 .1 .1 Conditional ML .0 .0 Tukey, k=7 -.1 -.1  1 Tukey, k=5 .1 .3 .5 .7 .9 .1 .3 .5 .7 .9 Tukey, k=5, corrected .04 -.04 -.02 .00 .02 .04 Bias correction -.04 -.02 .00 .02  1 Bias Bias effective only in large samples  1 .1 .3 .5 .7 .9 .1 .3 .5 .7 .9 18

  19. Conclusions Tukey M-estimators more robust against many large outliers Needs good robust initialization - from median or P  (Y=0) Adaptive choice of the tuning constant k gives M-estimators with good efficiencies irrespective of the true Poisson parameter M-estimators provide robustness also in INARCH case Bias correction works for long time series Ongoing work: extend to INGARCH, prove asymptotic normality 19

  20. References Cadigan, N.G., Chen, J. (2001). Properties of Robust M-estimators for Poisson and Negative Binomial Data. J. Statist. Comput. Simul. 70, 273-288. Davis, R.A., Dunsmuir, W.T.M., Street, S.B. (2003). Observation driven models for Poisson counts. Biometrika 90, 777-790. Ferland, R.A., Latour, A., Oraichi, D. (2006). Integer-valued GARCH processes. Journal of Time Series Analysis 27, 923-942. Fokianos, K., Fried, R. (2010). Outliers in INGARCH Processes. Journal of Time Series Analysis 31, 210-225 . Fokianos, K., Rahbek, A., Tjøstheim, D. (2009). Poisson Autoregression. J ournal of the American Statistical Association 104, 1430-1439. Simpson, D.G., Carroll, R.J., Ruppert, D. (1987). M-Estimation for Discrete Data: Asymptotic Distribution Theory & Implications. 20 Annals of Statistics 15, 657-669.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend