lozenge tilings and other lattice models via symmetric
play

Lozenge tilings and other lattice models via symmetric functions - PowerPoint PPT Presentation

Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Lozenge tilings and other lattice models via symmetric functions Greta Panova (University of Pennsylvania) based on: V.Gorin, G.Panova,


  1. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Lozenge tilings and other lattice models – via symmetric functions Greta Panova (University of Pennsylvania) based on: V.Gorin, G.Panova, Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Annals of Probability arXiv:1301.0634 G. Panova, Lozenge tilings with free boundaries, arXiv:1408.0417 . Firenze, Maggio 2015 1

  2. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Overview Alternating Sign Matrices (ASM)/ 6-Vertex model: Characters of U ( 1 ), boundary 0 1 of the Gelfand-Tsetlin graph 0 0 1 0 B C 1 1 1 2 2 . . . 0 1 � 1 1 B C @ A 1 � 1 1 0 2 2 3 . . . 0 1 0 0 . . . Normalized Schur functions: S � ( x 1 , . . . , x k ; N ) = s � ( x 1 , . . . , x k , 1 N � k ) s � (1 N ) Lozenge tilings: Dense loop model: ζ 1 ζ 2 y x L 2

  3. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Lozenge tilings Tilings of a domain Ω (on a triangular lattice) with elementary rhombi of 3 types (“lozenges”). 3

  4. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 3 3 2 2 1 4 3 2 2 1 3 2 2 1 2 1 1 1 1 1 5 5 4 4 3 4 3 3 3 4 2 2 2 2 3 1 1 2 2 2 2 1 1 1 1 1 1 4

  5. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 3 3 2 2 1 5 4 3 2 2 1 5 3 2 2 1 2 1 1 1 4 1 1 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 4

  6. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  7. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  8. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  9. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  10. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  11. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  12. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  13. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  14. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  15. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  16. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The many faces of lozenge tilings 5 4 4 4 3 2 5 4 4 4 3 2 5 3 3 2 2 1 5 3 3 2 2 1 4 3 2 2 1 4 3 2 2 1 3 2 2 1 3 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 5

  17. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Combinatorics: how many? 5 4 4 4 3 2 5 3 3 2 2 1 4 3 2 2 1 3 2 2 1 2 1 1 1 1 1 [MacMahon]: Boxed plane partitions (tilings of a ⇥ b ⇥ c ⇥ a ⇥ b ⇥ c hexagon) a b c Y Y Y i + j + k � 1 = i + j + k � 2 i =1 j =1 k =1 General: Lindstr¨ om-Gessel-Viennot determinants; hook-content formula. 6

  18. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Probability: limit behavior Question: Fix Ω in the plane and let grid size ! 0, what are the properties of uniformly random tilings of Ω ? 2.jpg Frozen regions (polygonal domains), “limit shapes” of the surface of the height function (plane partitions). ([Cohn–Larsen–Propp, 1998], [Kenyon–Okounkov, 2005], [Cohn–Kenyon–Propp, 2001; Kenyon-Okounkov-She ffi eld, 2006] ) 7

  19. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Behavior near the boundary, interlacing particles x x 3 1 x 2 1 N x 1 1 x 3 2 x 2 2 x 3 3 Question: Joint distribution of { x i j } k i =1 as N ! 1 Horizontal lozenges near a flat (rescaled)? boundary: x 1 1   x 2 x 2  2   1  x 3 x 3 x 3 3 2 1 8

  20. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Behavior near the boundary, interlacing particles x x 3 1 x 2 1 N x 1 1 x 3 2 x 2 2 x 3 3 Question: Joint distribution of { x i j } k i =1 as N ! 1 Horizontal lozenges near a flat (rescaled)? boundary: Conjecture [Okounkov–Reshetikhin, 2006]: x 1 1   The joint distribution converges to a GUE -corners x 2 x 2 (aka GUE -minors) process: eigenvalues of GUE ma-  2   1  trices. x 3 x 3 x 3 3 2 1 Proofs: hexagonal domain [Johansson-Nordenstam, 2006], more general domains [Gorin-P,2012], [Novak, 2014], un- bounded [Mkrtchyan, 2013] 8

  21. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model The Gaussian Unitary Ensemble (GUE) GUE: matrices [ X ij ] i , j : X = X T Re X ij , Im X ij – i.i.d. ⇠ N (0 , 1 / 2), i 6 = j X ii – i.i.d. ⇠ N (0 , 1) 0 1 a 11 a 12 a 13 a 14 ( x k 1 � x k 2 � · · · � x k k ) – eigenvalues of [ X i , j ] k i , j =1 B C a 21 a 22 a 23 a 24 B C @ A a 31 a 32 a 33 a 34 x j i � 1  x j � 1 i � 1  x j Interlacing condition: a 41 a 42 a 43 a 44 i x 4 x 4 x 4 x 4 1 2 3 4 x 3 x 3 x 3 1 2 3  x 2 x 2  1 2 x 1 1 The joint distribution of { x j i } 1  i  j  k is the GUE–corners (also, GUE-minors) process , =: GUE k . 9

  22. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model GUE in tilings: our setup Domain Ω � ( N ) : positions of the N horizontal lozenges on right boundary are: � ( N ) 1 + N � 1 > � ( N ) 2 + N � 2 > · · · > � ( N ) N 8 + 10 8 + 9 +4 8 + 8 1 8 + 7 8 + 6 2 +3 3 +2 +1 4 0 + 5 0 + 4 0 + 3 5 0 + 2 � (5) = (4 , 3 , 3 , 0 , 0) 0 + 1 ( 1 0 + 0 N Ω � ( N ) is not necessarily a fi- � = ( a , . . . , a , 0 , . . . , 0 ) nite polygon as N ! 1 , e.g. | {z } | {z } � ( N ) = ( N , N � 1 , . . . , 2 , 1)) c b $ a ⇥ b ⇥ c ... hexagon. 10

  23. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model Plane partitions/Gelfand-Tsetlin patterns λ 1 + N − 1 x 3 λ 2 + N − 2 1 x 3 2 x 3 3 λ N Line j = 3 5 4 4 4 3 3 4 3 3 3 3 3 N 3 3 2 1 3 1 0 0 2 1 0 0 0 2 0 0 0 0 � = (4 , 3 , 3 , 0 , 0) x 3 = (4 , 3 , 0) � = (5 , 4 , 3 , 1 , 0) n o k x i Question: Joint distribution of the (rescaled) positions i =1 as N ! 1 ? j 11

  24. Lozenge tilings Probability via Schur functions Free boundary 6-vertex/ASMs Dense loop model GUE in tilings: our results Limit profile f ( t ) of � ( N ) as N ! 1 : ✓ i ◆ � ( N ) i Theorem (Gorin-P (2012), Novak (2014)) ! f N N Let � ( N ) = ( � 1 ( N ) � . . . � � N ( N )) , N = 1 , 2 , . . . . If 9 a piecewise-di ff erentiable weakly decreasing function f ( t ) � ✓ i ◆� N X p � � � i ( N ) � ( N ) � � (limit profile of � ( N ) ) s.t. � f � = o ( N ) � N N f ( t ) N i =1 as N ! 1 and sup i , N | � i ( N ) / N | < 1 . � ( N ) = { x j Let Υ k i } k j =1 . Then 8 fixed k , as N ! 1 Ω � ( N ) domain: Υ k � ( N ) � NE ( f ) p ! GUE k (GUE-corners proc. rank k ) NS ( f ) λ 1 + N − 1 in the sense of weak convergence, where x 3 λ 2 + N − 2 1 Z 1 x 3 2 E ( f ) = f ( t ) dt , 0 Z 1 ✓ ◆ 2 f ( t ) � t + 1 dt � 1 6 � E ( f ) 2 S ( f ) = x 3 3 2 0 λ N Line j = 3 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend