tiling shuffling phenomenon
play

Tiling Shuffling Phenomenon Tri Lai University of Nebraska Lincoln - PowerPoint PPT Presentation

Tiling Shuffling Phenomenon Tri Lai University of Nebraska Lincoln Lincoln, NE 68588 Dimers 2020 University of Michigan August 11, 2020 Tri Lai Tiling Shuffling Phenomenon MacMahons Theorem Theorem (MacMahon) a b c 1 q i + j


  1. Tiling Shuffling Phenomenon Tri Lai University of Nebraska – Lincoln Lincoln, NE 68588 Dimers 2020 University of Michigan August 11, 2020 Tri Lai Tiling Shuffling Phenomenon

  2. MacMahon’s Theorem Theorem (MacMahon) a b c 1 − q i + j + t − 1 q vol ( π ) = � � � � PP q ( a , b , c ) := 1 − q i + j + t − 2 , π i =1 j =1 t =1 where the sum is taken over all plane partitions π fitting in an a × b × c box. k O b b i j 6 a a c c 4 3 2 2 1 2 1 c c a a 1 0 0 0 b b Tri Lai Tiling Shuffling Phenomenon

  3. MacMahon’s Theorem Theorem ( MacMahon 1900) The number of (lozenge) tilings of a centrally symmetric hexagon Hex ( a , b , c ) of sides a , b , c , a , b , c on the triangular lattice is a b c i + j + t − 1 � � � PP( a , b , c ) := i + j + t − 2 i =1 j =1 t =1 k O b b i j 6 a a c c 4 3 2 2 1 2 1 c c a a 1 0 0 0 b b Tri Lai Tiling Shuffling Phenomenon

  4. Punctured Hexagon: James Propp’s Problem n n n n + + 1 1 + 1 1 + n n n n n n n+1 n+1 Open Problem (Propp 1997) Find an explicit formula for the number of tilings of a hexagon of sides n , n + 1 , n , n + 1 , n , n + 1 with the central unit triangle removed. This is Problem 2 on his list of 20 open problems in the field of enumeration of tilings. Tri Lai Tiling Shuffling Phenomenon

  5. Ciucu–Eisenk¨ olbl–Krattenthaler–Zare’s cored hexagon x z+m y+m m y z x+m Ciucu–Eisenk¨ olbl–Krattenthaler–Zare (2001) generalized the above results by extending the size of the hole. Unit triangle is replaced by a triangle of an abritrary side. The triangular hole is at the ‘center’ of the hexagon of sides a , b + m , c , a + m , c + m , b . Tri Lai Tiling Shuffling Phenomenon

  6. Example 2 6 · 3 2 · 5 3 · 7 · 13 3 · 17 3 · 19 Tri Lai Tiling Shuffling Phenomenon

  7. Example 2 5 · 7 · 11 2 · 13 3 · 17 3 · 19 · 71 Tri Lai Tiling Shuffling Phenomenon

  8. Example 2 6 · 11 · 13 3 · 17 3 · 19 · 281 Tri Lai Tiling Shuffling Phenomenon

  9. Example The left tiling number: 2 5 · 3 · 7 3 · 11 3 · 13 4 · 17 Tri Lai Tiling Shuffling Phenomenon

  10. Example The left tiling number: 2 5 · 3 · 7 3 · 11 3 · 13 4 · 17 The right tiling number: 2 6 · 7 3 · 11 · 13 4 · 17 · 2683 Tri Lai Tiling Shuffling Phenomenon

  11. Shuffling Phenomenon The tiling number of punctured regions are not given by simple product formulas. Tri Lai Tiling Shuffling Phenomenon

  12. Shuffling Phenomenon The tiling number of punctured regions are not given by simple product formulas. A small modification (in the position, orientation, side-length, etc.) of the region would lead to unpredictable change in the tiling number. Tri Lai Tiling Shuffling Phenomenon

  13. Shuffling Phenomenon The tiling number of punctured regions are not given by simple product formulas. A small modification (in the position, orientation, side-length, etc.) of the region would lead to unpredictable change in the tiling number. However, in certain cases, our modifications change the tiling number by only a simple multiplicative factor. Tri Lai Tiling Shuffling Phenomenon

  14. First Example: Doubly-dented hexagon x+d x+d u y + + u y y u + + y u l l y + y d d + d + + y d y x+u x+u (a) (b) Position set of upper holes U = { s 1 , s 2 , . . . , s u } ⊂ [ x + y + u + d ] Position set of lower holes D = { t 1 , t 2 , . . . , t d } ⊂ [ x + y + u + d ] Assume U ∩ D = ∅ . Doubly-dented hexagon: H x , y ( U , D ) Tri Lai Tiling Shuffling Phenomenon

  15. Shuffling the holes x+d x+d y+u y+u y+u y+u l l y+d y+d y+d y+d x+u x+u (a) (b) U = { s 1 , s 2 , . . . , s u } → U ′ = { s ′ 1 , s ′ 2 , . . . , s ′ u } D = { t 1 , t 2 , . . . , t d } → D ′ = { t ′ 1 , t ′ 2 , . . . , t ′ d } H x , y ( U , D ) → H x , y ( U ′ , D ′ ) Tri Lai Tiling Shuffling Phenomenon

  16. Shuffling the holes x+d x+d y+u y+u y+u y+u l l y+d y+d y+d y+d x+u x+u (a) (b) Tiling number of H x , y ( U , D ) : 2 9 · 3 5 · 5 3 · 7 4 · 20107 Tri Lai Tiling Shuffling Phenomenon

  17. Shuffling the holes x+d x+d y+u y+u y+u y+u l l y+d y+d y+d y+d x+u x+u (a) (b) Tiling number of H x , y ( U , D ) : 2 9 · 3 5 · 5 3 · 7 4 · 20107 Tiling number of H x , y ( U ′ , D ′ ) : 2 11 · 3 3 · 5 3 · 7 5 · 20107 Tri Lai Tiling Shuffling Phenomenon

  18. Shuffling the holes x+d x+d y+u y+u y+u y+u l l y+d y+d y+d y+d x+u x+u (a) (b) Tiling number of H x , y ( U , D ) : 2 9 · 3 5 · 5 3 · 7 4 · 20107 Tiling number of H x , y ( U ′ , D ′ ) : 2 11 · 3 3 · 5 3 · 7 5 · 20107 The ratio of tilings: 2 − 2 · 3 2 · 7 − 1 Tri Lai Tiling Shuffling Phenomenon

  19. Shuffling Theorem x+d x+d y+u y+u y+u y+u l l y+d y+d y+d y+d x+u x+u (a) (b) Theorem (Shuffling Theorem) For U = { s 1 , s 2 , . . . , s u } , D = { t 1 , t 2 , . . . , t d } , U ′ = { s ′ 1 , s ′ 2 , . . . , s ′ u } , D ′ = { t ′ d } of [ x + y + n ] , such that U ∪ D = U ′ ∪ D ′ and 1 , t ′ 2 , . . . , t ′ U ∩ D = U ′ ∩ D ′ = ∅ M( H x , y ( U , D )) s j − s i t j − t i � � · M( H x , y ( U ′ , D ′ )) = (1) s ′ j − s ′ t ′ j − t ′ i i 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d Tri Lai Tiling Shuffling Phenomenon

  20. q -Shuffling Theorem A right lozenge is weighted by q t , where t is the distance to the base of the hexagon. x+d 15 15 15 14 14 14 13 13 12 u y + + u y 11 11 11 10 10 10 9 l 8 8 8 6 5 5 4 4 4 y 4 d + + d y 3 3 2 2 2 2 1 1 1 x+u Tri Lai Tiling Shuffling Phenomenon

  21. q -Shuffling Theorem A right lozenge is weighted by q t , where t is the distance to the base of the hexagon. A tiling is weighted by the product of weights of all lozenges x+d 15 15 15 14 14 14 13 13 12 u y + + u y 11 11 11 10 10 10 9 l 8 8 8 6 5 5 4 4 4 y 4 d + + d y 3 3 2 2 2 2 1 1 1 x+u Tri Lai Tiling Shuffling Phenomenon

  22. q -Shuffling Theorem A right lozenge is weighted by q t , where t is the distance to the base of the hexagon. A tiling is weighted by the product of weights of all lozenges M q ( R ) is the sum of weights of all tilings of R x+d 15 15 15 14 14 14 13 13 12 u y + + u y 11 11 11 10 10 10 9 l 8 8 8 6 5 5 4 4 4 y 4 d + + d y 3 3 2 2 2 2 1 1 1 x+u Tri Lai Tiling Shuffling Phenomenon

  23. q -Shuffling Theorem Theorem (L. –Rohatgi 2019) q s j − q s i q t j − q t i M q ( H x , y ( U , D )) M q ( H x , y ( U ′ , D ′ )) = q C · � � i · q s ′ j − q s ′ q t ′ j − q t ′ i 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d Tri Lai Tiling Shuffling Phenomenon

  24. Schur functions Theorem (Shuffling Theorem) For U = { s 1 , s 2 , . . . , s u } , D = { t 1 , t 2 , . . . , t d } , U ′ = { s ′ 1 , s ′ 2 , . . . , s ′ u } , d } of [ x + y + n ] , such that U ∪ D = U ′ ∪ D ′ and D ′ = { t ′ 1 , t ′ 2 , . . . , t ′ U ∩ D = U ′ ∩ D ′ = ∅ s j − s i t j − t i � � · j − i j − i M( H x , y ( U , D )) 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d M( H x , y ( U ′ , D ′ )) = s ′ j − s ′ t ′ j − t ′ i i � � · j − i j − i 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d All products can be expressed in terms of special Schur functions. Tri Lai Tiling Shuffling Phenomenon

  25. Schur functions Theorem (Shuffling Theorem) s j − s i t j − t i � � · j − i j − i M( H x , y ( U , D )) 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d M( H x , y ( U ′ , D ′ )) = s ′ j − s ′ t ′ j − t ′ i i � � · j − i j − i 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d s j − s i � j − i = s λ ( s 1 ,..., s u ) (1 , 1 , . . . ), where 1 ≤ i < j ≤ u λ ( s 1 , . . . , s u ) = ( s u − u + 1 , s u − 1 − u + 2 , . . . , s 3 − 2 , s 2 − 1 , s 1 ) Tri Lai Tiling Shuffling Phenomenon

  26. Schur functions Theorem (Shuffling Theorem) s j − s i t j − t i � � · j − i j − i M( H x , y ( U , D )) 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d M( H x , y ( U ′ , D ′ )) = s ′ j − s ′ t ′ j − t ′ i i � � · j − i j − i 1 ≤ i < j ≤ u 1 ≤ i < j ≤ d s j − s i � j − i = s λ ( s 1 ,..., s u ) (1 , 1 , . . . ), where 1 ≤ i < j ≤ u λ ( s 1 , . . . , s u ) = ( s u − u + 1 , s u − 1 − u + 2 , . . . , s 3 − 2 , s 2 − 1 , s 1 ) s λ ( U ) (1 , 1 ,... ) s λ ( D ) (1 , 1 ,... ) RHS = s λ ( U ′ ) (1 , 1 ,... ) s λ ( D ′ ) (1 , 1 ,... ) Tri Lai Tiling Shuffling Phenomenon

  27. Schur functions x+d x+d y+u y+u y+u y+u l y+d y+d y+d y+d x+u (a) x+u (b) M( H x , y ( U , D )) = � S ⊆ ( U ∪ D ) c M( S x + d , y + u ( U ∪ S ))M( S x + u , y + d ( D ∪ S )) | S | = y Tri Lai Tiling Shuffling Phenomenon

  28. Schur functions x+d x+d y+u y+u y+u y+u l y+d y+d y+d y+d x+u (a) x+u (b) M( H x , y ( U , D )) = � S ⊆ ( U ∪ D ) c M( S x + d , y + u ( U ∪ S ))M( S x + u , y + d ( D ∪ S )) | S | = y (Cohn–Larsen –Propp) M( S x + d , y + u ( U ∪ S )) = s λ ( U ∪ S ) (1 , 1 , . . . ) Tri Lai Tiling Shuffling Phenomenon

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend