low energy local density of states of the 1d hubbard model
play

Low-energy local density of states of the 1D Hubbard model Imke - PowerPoint PPT Presentation

Low-energy local density of states of the 1D Hubbard model Imke Schneider, Institut fr Theoretische Physik, TU Dresden Florence, 30th May 2012 In collaboration with: Stefan Sffing, Michael Bortz, Alexander Struck, and Sebastian Eggert, TU


  1. Low-energy local density of states of the 1D Hubbard model Imke Schneider, Institut für Theoretische Physik, TU Dresden Florence, 30th May 2012 In collaboration with: Stefan Söffing, Michael Bortz, Alexander Struck, and Sebastian Eggert, TU Kaiserslautern – p. 1

  2. Low energy properties of fermionic systems in 1D Strong correlations, interactions dominant, universal behavior no single-particle picture possible, excitations collective bosonic modes Luttinger liquid Spin- and charge excitations decouple – p. 2

  3. Tunneling in quantum wires Photo emission Scanning tunneling spectroscopy e − proportional to dI/dV Density of states: � ∞ − 1 e iωt G r ( t ) dt ρ ( ω ) = π Im 0 |� ω m | ψ † | 0 �| 2 δ ( ω − ω m ) � = m ρ ( ω ) ∝ ω α Luttinger liquid: – p. 3

  4. Momentum resolved tunneling experiments in 1D Experimental signatures of spin-charge separation Semiconductor hetero-structures Auslaender, Steinberg, Yacoby, Tserkovnyak, Halperin, Baldwin, Pfeiffer, and West, Science 308, 88 (2005) Jompol, Ford, Griffiths, Farrer, Jones, Anderson, Ritchie, Silk, and Schofield, Science 325 (2009) Quasi one-dimensional crystals Kim, Koh, Rotenberg, Oh, Eisaki, Motoyama, Uchida, Tohyama, Maekawa, Shen, and Kim, Nature Phys. 2 (2006) Self-organized atomic chains ( Segovia, Purdie, Hengsberger, and Baer, Nature 402 (1999)) – p. 4

  5. Scanning tunneling spectroscopy in 1D Carbon nanotubes Lee, Eggert, Kim, Kahng, Shinorara, and Kuk, Phys. Rev. Lett. 93 (2004) Venema, Wild¨ oer, Janssen, Tans, Tuinstra, Kouwenhoven, and Dekker, Science 283 (1999) Lemay, Janssen, van den Hout, Mooij, Bronikowski, Willis, Smalley, Kouwenhoven, and Dekker, Nature 412 (2001) Self-organized atomic gold chains Sch¨ Blumenstein, afer, Mietke, Meyer, Dollinger, Lochner, Cui, Patthey, Matzdorf, and Claessen, Na- ture Phys. 7 (2011) Signatures of power law density of states → Luttinger liquid behavior – p. 5

  6. Outline Local density of states of interacting fermions in 1D Luttinger liquid: power laws here: Effects of boundaries and finite system sizes DMRG: lattice model of spinless fermions Spectral weight of individual excitations Bosonization: Recursion formula DMRG: Hubbard model – p. 6

  7. Luttinger liquid with impurity Local density of states |� ω m | ψ † ( x ) | 0 �| 2 δ ( ω − ω m ) � ρ ( ω, x ) = m � � � ∞ � � 1 � � e iωt � ψ ( x, t ) ψ † ( x, 0) � dt � � � � = 2 π −∞ strong depletion for small ρ(ω x ) energies and at the boundary ρ(ω x ) 1/2 (ω x ) 1/8 (ω x ) (here K s = 1 , K c = 1 2 ) 0 2 4 6 8 10 ω x/v c Eggert, Johannesson, Mattsson, Phys. Rev. Lett. 76, (1996) – p. 7

  8. Finite Luttinger liquid with boundaries |� ω m | ψ † ( x ) | 0 �| 2 δ ( ω − ω m ) � ρ ( ω, x ) = � � �� �� m � � �� �� � � �� �� � � �� �� � ∞ 1 e iωt � ψ ( x, t ) ψ † ( x, 0) � dt = 2 π −∞ ρ ( ω 0 , x ) Free fermions: single particle wave function: ρ ( ω m , x ) = | Ψ m ( x ) | 2 L 0 ρ ( ω m , x ) Interacting: m = 1 m = 0 Bosonization Anfuso, Eggert, Phys. Rev. B 68 (2003) 0 L – p. 8

  9. Exact lattice model: local density of states in DMRG L − 1 L − 1 � � � x ψ x +1 + ψ † � ψ † n x = ψ † H = − t x +1 ψ x + U n x n x +1 , x ψ x − 1 / 2 x =1 x =1 Approach 1: Dynamical DMRG and tDMRG + entire spectrum - energy levels not resolvable Jeckelmann, arXiv:1111.6545 Approach 2: transition matrix elements in DMRG + energy levels resolvable - only for low energy excitations Schneider, Struck, Bortz, and Eggert, Phys. Rev. Lett. 101, 206401 (2008) S¨ offing, Schneider, and Eggert, arXiv:1204.0003 � ∞ � |� ω m | ψ † x | 0 �| 2 δ ( ω − ω m ) = − 1 e iωt G r ( x, t ) dt ρ ( ω, x ) = π Im 0 m – p. 9

  10. Understanding of individual excitations Free fermions � � � � � � � � � � � � � � � � � � � � |� a | ψ † x | N 0 �| 2 k ǫ ( k ) c † k = π H = � k c k L n n = 0 , 1 , 2 , . . . x | N 0 �| 2 = 2 |� N 0 | c n ψ † L | sin( k F + k n ) x | 2 L 0 lattice model effective theory a = = † † † c 2 N b c c c N − 0 1 0 1 0 ω 3 ω 2 N 0 +1 n=0 k F k F ω 1 ω 0 – p. 10

  11. Local density of states: DMRG results � � �� �� L − 1 L − 1 � � �� �� � � �� �� � � � � �� �� � � � x ψ x +1 + ψ † � ψ † �� �� � � H = − t x +1 ψ x + U n x n x +1 �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� x =1 x =1 � � �� �� � � �� �� � � �� �� � � – p. 11

  12. Local density of states: DMRG results ρ ( ω 2 , x ) U = 0 . 7 0.03 0.025 0.02 0.015 0.01 0.005 0 0 20 40 60 x DMRG ρ ( ω 2 , x ) = |� a | ψ † ( x ) | 0 �| 2 + |� b | ψ † ( x ) | 0 �| 2 – p. 12

  13. Local density of states: DMRG results ρ ( ω 2 , x ) U = 0 . 7 0.03 0.025 U = 0 . 7 ρ ( ω 2 , x ) 0.03 0.02 0.025 0.02 0.015 0.015 0.01 0.01 0.005 0 x 0 20 40 60 0.005 0 0 20 40 60 x DMRG ρ ( ω 2 , x ) = |� a | ψ † ( x ) | 0 �| 2 + |� b | ψ † ( x ) | 0 �| 2 – p. 12

  14. Local density of states: DMRG results ρ ( ω 2 , x ) U = 0 . 7 0.03 0.025 U = 0 . 7 ρ ( ω 2 , x ) 0.03 0.02 0.025 0.02 0.015 0.015 0.01 0.01 0.005 0 x 0 20 40 60 0.005 0 0 20 40 60 80 x DMRG Bosonization ρ ( ω 2 , x ) = |� a | ψ † ( x ) | 0 �| 2 + |� b | ψ † ( x ) | 0 �| 2 – p. 12

  15. Density of states: position integrated ρ ( ω m ) U = 0 . 7 1 0.8 ρ ( ω m ) = � x ρ ( ω m , x ) 0.6 0.4 DMRG 0.2 0 0 2 4 6 8 10 m – p. 13

  16. Density of states: position integrated ρ ( ω m ) U = 0 . 7 1 0.8 ρ ( ω m ) = � x ρ ( ω m , x ) 0.6 0.4 DMRG DMRG summiert 0.2 0 0 2 4 6 8 10 m – p. 13

  17. Density of states: position integrated ρ ( ω m ) U = 0 . 7 1 0.8 ρ ( ω m ) = � x ρ ( ω m , x ) 0.6 0.4 DMRG DMRG summed Bosonization 0.2 0 0 2 4 6 8 10 m – p. 13

  18. Recursive method for the density of states � ∞ −∞ e iωt � ψ ( x, t ) ψ † ( x, 0) � dt 1 ρ ( ω, x ) = 2 π Correlation functions in standard bosonization � ∞ � 1 R ( x, 0) � = | c | 2 exp � � ψ R ( x, t ) ψ † ℓ e − iℓ ∆ ωt γ ℓ ( x ) ℓ =1 � ∞ � � ∞ � 1 1 � e iℓ ∆ ωt A † � e − iℓ ∆ ωt A ℓ ( x ) ψ † R ( x, t ) := c ( x ) exp √ ℓ ( x ) exp √ i i ℓ ℓ ℓ =1 ℓ =1 γ ℓ ( x ) = [ A ℓ ( x ) , A † ℓ ( x )] , A ℓ ( x ) = α ( K ) e ik ℓ x b R ℓ − β ( K ) e − ik ℓ x b L ℓ Finite systems � ∞ 1 � dt e iωt � ψ R ( x, t ) ψ † R ( x, 0) � = ρ m δ ( w − m ∆ ω ) 2 π −∞ m 1 ρ 0 = | c | 2 ρ m = m ( ρ m − 1 γ 1 + ρ m − 2 γ 2 + · · · + ρ 1 γ m − 1 + ρ 0 γ m ) mit Schneider and Eggert, Phys. Rev. Lett. 104 (2010) earlier recursive approach: Sch¨ onhammer and Meden, Phys. Rev. B 47 (1993) – p. 14

  19. Spinless fermions with periodic b. c. ρ m = 1 Density of states: m ( ρ m − 1 γ 1 + ρ m − 2 γ 2 + · · · + ρ 1 γ m − 1 + ρ 0 γ m ) Commutator mode independent � 1 γ = 1 � K + K Luttinger-parameter K 2 Recursion formula exacty solvable Γ( m + γ ) 1 ρ m = | c | 2 Γ( γ )Γ( m + 1) ≈ | c | 2 Γ( γ ) m γ − 1 well known power law in general γ ℓ ( x ) mode and x dependent – p. 15

  20. Spinful fermions with open b. c. Luttinger liquid picture: States described by integer spin and charge quantum numbers { m s , m c } π Energies: ω m s ,m c = ( m s v s + m c v c ) L +1 with v s ≤ v c Density of states: ρ uni s,m s ( x ) ρ uni c,m c ( x ) − cos(2 k F x ) ρ osc s,m s ( x ) ρ osc | c x | 2 � � ρ m s ,m c ( x ) = c,m c ( x ) Calculate recursively, e.g. : m c c,m c ( x ) = 1 � ρ uni ρ uni c,m c − ℓ ( x ) γ uni c,ℓ ( x ) m c ℓ =1 γ uni c,ℓ ( x ) = (1 /K c + K c ) / 4 + (1 /K c − K c ) cos(2 k ℓ x ) – p. 16

  21. Comparison to DMRG results (1/3) Hubbard model: H = − t � L − 1 + U � L � ψ † � σ,x ψ σ,x +1 + h.c. x =1 n ↑ ,x n ↓ ,x σ, x =1 Energies ∆ ω Total density of states 0s 2c level 2 ∆ω 2s 1c 1 4s 0c level 1 level 2 ρ 0s 2c, S=1/2 1s 1c 0.1 0s 2c, S=1/2 0s 1c, S=1/2 3s 0c 1s 1c, S=1/2 1s 0c, S=1/2 2s 0c, S=1/2 0.5 level 1 0s 1c 2s 0c, S=3/2 2s 0c 0.05 1s 0c 0 U U 0 1 2 3 4 5 6 1 2 3 4 5 6 level 0 0 0s 0c 0 1 2 3 4 5 U 6 Parameter: N ↑ = N ↓ + 1 = 31 and L = 90 – p. 17

  22. Comparison to DMRG results (2/3) Local density of states: ρ 0s 0c 0.02 0.01 0 N ↑ = N ↓ + 1 = 31 0s 1c 0.006 L = 92 0.005 0s 2c 0s 3c U = 1 0.004 0.005 1s 0c 0.004 2s 0c 0.003 3s 0c 0.002 0.001 x 10 20 30 40 50 60 70 80 90 Lines: predictions for K c = 0 . 9081 and K s = 1 . 16 adjusted by shifts Local density of states increases near boundary – p. 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend