long monochromatic paths and cycles in 2 edge colored
play

Long monochromatic paths and cycles in 2-edge-colored multipartite - PowerPoint PPT Presentation

Long monochromatic paths and cycles in 2-edge-colored multipartite graphs Xujun Liu University of Illinois at Urbana-Champaign Joint work with J ozsef Balogh, Alexandr Kostochka and Mikhail Lavrov 31st Cumberland Conference on Combinatorics,


  1. Long monochromatic paths and cycles in 2-edge-colored multipartite graphs Xujun Liu University of Illinois at Urbana-Champaign Joint work with J´ ozsef Balogh, Alexandr Kostochka and Mikhail Lavrov 31st Cumberland Conference on Combinatorics, Graph Theory and Computing May 18, 2019 Xujun Liu (UIUC) Long cycle May 18, 2019 1 / 23

  2. Overview Introduction 1 Main results 2 Xujun Liu (UIUC) Long cycle May 18, 2019 2 / 23

  3. Outline Introduction 1 Main results 2 Xujun Liu (UIUC) Long cycle May 18, 2019 3 / 23

  4. Introduction For graphs G 0 , . . . , G k we write G 0 �→ ( G 1 , . . . , G k ) if for every k -coloring of the edges of G 0 , for some i ∈ [ k ] there will be a copy of G i with all edges of color i . The Ramsey number R k ( G ) is the minimum N such that K N �→ ( G 1 , . . . , G k ), where G 1 = . . . = G k = G . Xujun Liu (UIUC) Long cycle May 18, 2019 4 / 23

  5. Introduction For graphs G 0 , . . . , G k we write G 0 �→ ( G 1 , . . . , G k ) if for every k -coloring of the edges of G 0 , for some i ∈ [ k ] there will be a copy of G i with all edges of color i . The Ramsey number R k ( G ) is the minimum N such that K N �→ ( G 1 , . . . , G k ), where G 1 = . . . = G k = G . Example R 2 ( K 3 ) = 6. Figure: R 2 ( K 3 ) = 6. Xujun Liu (UIUC) Long cycle May 18, 2019 4 / 23

  6. Previous results In this talk, we denote P n the path on n vertices and M n the matching with n edges. A matching M in G is connected if all edges of M are in the same component of G . Xujun Liu (UIUC) Long cycle May 18, 2019 5 / 23

  7. Previous results In this talk, we denote P n the path on n vertices and M n the matching with n edges. A matching M in G is connected if all edges of M are in the same component of G . � 3 n − 2 � Gerencs´ er and Gy´ arf´ as (1967): R 2 ( P n ) = . They actually 2 showed for positive integers k ≥ ℓ , R ( P k , P ℓ ) = k − 1 + ⌊ ℓ 2 ⌋ . Xujun Liu (UIUC) Long cycle May 18, 2019 5 / 23

  8. Previous results In this talk, we denote P n the path on n vertices and M n the matching with n edges. A matching M in G is connected if all edges of M are in the same component of G . � 3 n − 2 � Gerencs´ er and Gy´ arf´ as (1967): R 2 ( P n ) = . They actually 2 showed for positive integers k ≥ ℓ , R ( P k , P ℓ ) = k − 1 + ⌊ ℓ 2 ⌋ . Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007): � 2 n − 1 , if n is odd R 3 ( P n ) = 2 n − 2 , if n is even Xujun Liu (UIUC) Long cycle May 18, 2019 5 / 23

  9. Previous results In this talk, we denote P n the path on n vertices and M n the matching with n edges. A matching M in G is connected if all edges of M are in the same component of G . � 3 n − 2 � Gerencs´ er and Gy´ arf´ as (1967): R 2 ( P n ) = . They actually 2 showed for positive integers k ≥ ℓ , R ( P k , P ℓ ) = k − 1 + ⌊ ℓ 2 ⌋ . Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007): � 2 n − 1 , if n is odd R 3 ( P n ) = 2 n − 2 , if n is even More colors? (For k ≥ 4) Xujun Liu (UIUC) Long cycle May 18, 2019 5 / 23

  10. Previous results More colors (For k ≥ 4). Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  11. Previous results More colors (For k ≥ 4). Erd˝ os-Gallai (1959): Let G be a graph on n vertices. If e ( G ) > ℓ ( n − 1) / 2, then G contains a cycle of length at least ℓ + 1. It implies R k ( P n ) ≤ kn . Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  12. Previous results More colors (For k ≥ 4). Erd˝ os-Gallai (1959): Let G be a graph on n vertices. If e ( G ) > ℓ ( n − 1) / 2, then G contains a cycle of length at least ℓ + 1. It implies R k ( P n ) ≤ kn . k S´ ark˝ ozy (2016): R k ( P n ) ≤ ( k − 16 k 3 +1 ) n . Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  13. Previous results More colors (For k ≥ 4). Erd˝ os-Gallai (1959): Let G be a graph on n vertices. If e ( G ) > ℓ ( n − 1) / 2, then G contains a cycle of length at least ℓ + 1. It implies R k ( P n ) ≤ kn . k S´ ark˝ ozy (2016): R k ( P n ) ≤ ( k − 16 k 3 +1 ) n . Davis, Jenssen and Roberts (2017): R k ( P n ) ≤ ( k − 1 4 + 1 2 k ) n . Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  14. Previous results More colors (For k ≥ 4). Erd˝ os-Gallai (1959): Let G be a graph on n vertices. If e ( G ) > ℓ ( n − 1) / 2, then G contains a cycle of length at least ℓ + 1. It implies R k ( P n ) ≤ kn . k S´ ark˝ ozy (2016): R k ( P n ) ≤ ( k − 16 k 3 +1 ) n . Davis, Jenssen and Roberts (2017): R k ( P n ) ≤ ( k − 1 4 + 1 2 k ) n . Knierim and Su (2019): R k ( C n ) ≤ ( k − 1 2 + o (1)) n , where n is even. It implies R k ( P n ) ≤ ( k − 1 2 + o (1)) n . Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  15. Previous results More colors (For k ≥ 4). Erd˝ os-Gallai (1959): Let G be a graph on n vertices. If e ( G ) > ℓ ( n − 1) / 2, then G contains a cycle of length at least ℓ + 1. It implies R k ( P n ) ≤ kn . k S´ ark˝ ozy (2016): R k ( P n ) ≤ ( k − 16 k 3 +1 ) n . Davis, Jenssen and Roberts (2017): R k ( P n ) ≤ ( k − 1 4 + 1 2 k ) n . Knierim and Su (2019): R k ( C n ) ≤ ( k − 1 2 + o (1)) n , where n is even. It implies R k ( P n ) ≤ ( k − 1 2 + o (1)) n . Sun, Yang, Xu and Li (2006): R k ( P n ) ≥ ( k − 1 + o (1)) n . Xujun Liu (UIUC) Long cycle May 18, 2019 6 / 23

  16. Previous results Figaj and � Luczak used the Szemer´ edi regularity lemma to show that in the case of Ramsey numbers asymptotically, avoiding connected matchings, paths and even cycles are the same. Lemma Let a real number c > 0 and a positive integer k be given. If for every ǫ > 0 there exists a δ > 0 and an n 0 such that for every even n > n 0 and � v ( G ) � each graph G with v ( G ) > (1 + ǫ ) cn and e ( G ) ≥ (1 − δ ) and each 2 k-edge-coloring of G has a monochromatic connected matching M n / 2 , then for sufficiently large n, R k ( C n ) ≤ ( c + o (1)) n. Hence, we also have R k ( P n ) ≤ ( c + o (1)) n. Xujun Liu (UIUC) Long cycle May 18, 2019 7 / 23

  17. Host graph: complete bipartite graph Gy´ arf´ as and Lehel (1973), Faudree and Schelp (1975): For positive integers n , K n , n �→ ( P 2 ⌈ n / 2 ⌉ , P 2 ⌈ n / 2 ⌉ ). Furthermore, K n , n �→ ( P 2 ⌈ n / 2 ⌉ +1 , P 2 ⌈ n / 2 ⌉ +1 ). Xujun Liu (UIUC) Long cycle May 18, 2019 8 / 23

  18. Host graph: complete bipartite graph Gy´ arf´ as and Lehel (1973), Faudree and Schelp (1975): For positive integers n , K n , n �→ ( P 2 ⌈ n / 2 ⌉ , P 2 ⌈ n / 2 ⌉ ). Furthermore, K n , n �→ ( P 2 ⌈ n / 2 ⌉ +1 , P 2 ⌈ n / 2 ⌉ +1 ). | V ′ 1 | = n | V ′′ 1 | = n | V 1 | = 2 n | V 2 | = 2 n | V ′ 2 | = n | V ′′ 2 | = n Xujun Liu (UIUC) Long cycle May 18, 2019 8 / 23

  19. Host graph: complete bipartite graph DeBiasio and Krueger (2019+): Let n be a sufficiently large positive integer. Then K n , n �→ ( C ≥ 2 ⌊ n / 2 ⌋ , C ≥ 2 ⌊ n / 2 ⌋ ). Moreover, they also showed For all 0 < δ < 1 and ǫ > 0, there exists n 0 such that if G is a balanced bipartite graph with 2 n ≥ 2 n 0 vertices and δ ( G ) ≥ δ n , then G �→ ( C ≥ ( f ( δ ) − ǫ ) n , C ≥ ( f ( δ ) − ǫ ) n ) , where  δ, 0 ≤ δ ≤ 2 / 3   f ( δ ) = 4 δ − 2 , 2 / 3 ≤ δ ≤ 3 / 4  1 , 3 / 4 ≤ δ ≤ 1 .  Xujun Liu (UIUC) Long cycle May 18, 2019 9 / 23

  20. Host graph: complete bipartite graph DeBiasio and Krueger (2019+): Let n be a sufficiently large positive integer. Then K n , n �→ ( C ≥ 2 ⌊ n / 2 ⌋ , C ≥ 2 ⌊ n / 2 ⌋ ). Moreover, they also showed For all 0 < δ < 1 and ǫ > 0, there exists n 0 such that if G is a balanced bipartite graph with 2 n ≥ 2 n 0 vertices and δ ( G ) ≥ δ n , then G �→ ( C ≥ ( f ( δ ) − ǫ ) n , C ≥ ( f ( δ ) − ǫ ) n ) , where  δ, 0 ≤ δ ≤ 2 / 3   f ( δ ) = 4 δ − 2 , 2 / 3 ≤ δ ≤ 3 / 4  1 , 3 / 4 ≤ δ ≤ 1 .  Bucic, Letzter and Sudakov (2018): For positive integers n , K n , n �→ ( P 2 n 3 − o ( n ) , P 2 n 3 − o ( n ) , P 2 n 3 − o ( n ) ). Xujun Liu (UIUC) Long cycle May 18, 2019 9 / 23

  21. Host graph: complete tripartite graph Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007): For positive integers n , K n , n , n �→ ( P 2 n − o ( n ) , P 2 n − o ( n ) ). Xujun Liu (UIUC) Long cycle May 18, 2019 10 / 23

  22. Host graph: complete tripartite graph Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007): For positive integers n , K n , n , n �→ ( P 2 n − o ( n ) , P 2 n − o ( n ) ). Conjecture (Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007)) K n , n , n �→ ( P 2 n +1 , P 2 n +1 ) . Xujun Liu (UIUC) Long cycle May 18, 2019 10 / 23

  23. Host graph: complete tripartite graph Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007): For positive integers n , K n , n , n �→ ( P 2 n − o ( n ) , P 2 n − o ( n ) ). Conjecture (Gy´ arf´ as, Ruszink´ o, S´ ark˝ ozy and Szemer´ edi (2007)) K n , n , n �→ ( P 2 n +1 , P 2 n +1 ) . Theorem (Balogh, Kostochka, Lavrov, L. (2019+)) Let n be sufficiently large. Then K n , n , n �→ ( P 2 n +1 , P 2 n +1 ) . Xujun Liu (UIUC) Long cycle May 18, 2019 10 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend