a fine grained analogue of schaefer s theorem in p
play

A Fine-Grained Analogue of Schaefers Theorem in P: Dichotomy of k - PowerPoint PPT Presentation

A Fine-Grained Analogue of Schaefers Theorem in P: Dichotomy of k -Quantified First-Order Graph Properties Karl Nick Marvin Bringmann 1 Fischer 1 Knnemann 1 1 Max Planck Institute for Informatics, Saarland Informatics Campus (SIC),


  1. A Fine-Grained Analogue of Schaefer’s Theorem in P: Dichotomy of ∃ k ∀ -Quantified First-Order Graph Properties Karl Nick Marvin Bringmann 1 Fischer 1 Künnemann 1 1 Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken

  2. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph).

  3. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: E(x, y) ∧ E(y, z) ∧ E(z, x)

  4. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: E(x, y) ∧ E(y, z) ∧ E(z, x)

  5. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: E(x, y) ∧ E(y, z) ∧ E(z, x) 3-independent set

  6. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: SQL E(x, y) ∧ E(y, z) ∧ E(z, x) Age Id Name Salary Id 3-independent set

  7. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: SQL E(x, y) ∧ E(y, z) ∧ E(z, x) Age Id Name Salary Id we measure the complexity in the number of edges m 3-independent set

  8. First-Order Property Model-Checking Fix a first-order property ψ . The model-checking problem for ψ asks to check whether ψ is true on a given structure (e.g. graph). ∃ x ∃ y ∃ z: SQL E(x, y) ∧ E(y, z) ∧ E(z, x) Age Id Name Salary Id we measure the complexity in the number of edges m 3-independent set here, m equals the size of the database

  9. Orthogonal Vectors Given two sets X 1 , X 2 ⊆ {0, 1} d of size n, 1 1 1 1 0 0 orth. 0 1 1 1 0 0 check whether there exists an orthogonal 1 1 1 1 0 0 pair x 1 ∈ X 1 , x 2 ∈ X 2 1 0 1 1 1 1

  10. Orthogonal Vectors Given two sets X 1 , X 2 ⊆ {0, 1} d of size n, 1 1 1 1 0 0 orth. 0 1 1 1 0 0 check whether there exists an orthogonal 1 1 1 1 0 0 pair x 1 ∈ X 1 , x 2 ∈ X 2 1 0 1 1 1 1 requires time n2 − o(1) · poly(d) under SETH

  11. Orthogonal Vectors Given two sets X 1 , X 2 ⊆ {0, 1} d of size n, 1 1 1 1 0 0 orth. 0 1 1 1 0 0 check whether there exists an orthogonal 1 1 1 1 0 0 pair x 1 ∈ X 1 , x 2 ∈ X 2 1 0 1 1 1 1 requires time n2 − o(1) · poly(d) under SETH i [d] x 1 [i] = 1 x 2 [i] = 1 ∃ x 1 ∈ X 1 ∃ x 2 ∈ X 2 ∀ i ∈ [d]: x 1 x 1 [i] = 0 ∨ x 2 [i] = 0 x 2 X 1 X 2

  12. Orthogonal Vectors Given two sets X 1 , X 2 ⊆ {0, 1} d of size n, 1 1 1 1 0 0 orth. 0 1 1 1 0 0 check whether there exists an orthogonal 1 1 1 1 0 0 pair x 1 ∈ X 1 , x 2 ∈ X 2 1 0 1 1 1 1 requires time n2 − o(1) · poly(d) under SETH i [d] here, m equals the total number of x 1 [i] = 1 1-entries x 2 [i] = 1 ∃ x 1 ∈ X 1 ∃ x 2 ∈ X 2 ∀ i ∈ [d]: x 1 x 1 [i] = 0 ∨ x 2 [i] = 0 x 2 X 1 X 2

  13. Orthogonal Vectors k- Given two sets X 1 , X 2 ⊆ {0, 1} d of size n, 1 1 1 1 0 0 orth. 0 1 1 1 0 0 check whether there exists an orthogonal 1 1 1 1 0 0 pair x 1 ∈ X 1 , x 2 ∈ X 2 1 0 1 1 1 1 requires time n2 − o(1) · poly(d) under SETH i [d] here, m equals the total number of x 1 [i] = 1 1-entries x 2 [i] = 1 ∃ x 1 ∈ X 1 . . . ∃ x k ∈ X k ∀ i ∈ [d]: x 1 x 1 [i] = 0 ∨ . . . ∨ x k [i] = 0 x 2 . . . X 1 X 2 X k

  14. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k )

  15. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k ) • (Sparse) k-OV is complete for the class of (k + 1)-quantifier properties [Gao, Impagliazzo, Kolokolova, Williams ’17]

  16. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k ) • (Sparse) k-OV is complete for the class of (k + 1)-quantifier properties [Gao, Impagliazzo, Kolokolova, Williams ’17] • All complete properties require time m k − o(1) under SETH

  17. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k ) • (Sparse) k-OV is complete for the class of (k + 1)-quantifier properties [Gao, Impagliazzo, Kolokolova, Williams ’17] • All complete properties require time m k − o(1) under SETH What about the others? Can we classify queries according to their complexity?

  18. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k ) • (Sparse) k-OV is complete for the class of (k + 1)-quantifier properties [Gao, Impagliazzo, Kolokolova, Williams ’17] • All complete properties require time m k − o(1) under SETH What about the others? Can we classify queries according to their complexity? O(m k ) vs. O(m k − 0.01 )

  19. Our Starting Point • Each (k + 1)-quantifier first-order query can be checked in time O(m k ) • (Sparse) k-OV is complete for the class of (k + 1)-quantifier properties [Gao, Impagliazzo, Kolokolova, Williams ’17] • All complete properties require time m k − o(1) under SETH Constraint First-order satisfaction problems properties 3-SAT is k-OV is NP-complete FOP-complete [Cook ’71] [GIKW ’17] Every Boolean ? CSP is either in P or NP-complete [Schaefer ’78]

  20. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties

  21. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties ∃ x 1 . . . ∃ x k ∀ y: ψ = φ (E(x 1 , y), . . . , E(x k , y))

  22. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties ∃ x 1 . . . ∃ x k ∀ y: ψ = φ (E(x 1 , y), . . . , E(x k , y)) Boolean function φ : {0, 1}k → {0, 1}

  23. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1}

  24. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) for any subset J ⊆ [k] of k − h inputs, Boolean function φ : {0, 1}k → {0, 1} there exists an assignment α : J → {0, 1}, so that φ | α has exactly one falsifying assignment

  25. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1}

  26. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1} h 4 3 2 ≤ 1 2 3 4 k

  27. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1} h 4 require time mk − o(1) 2 < h under the Hyperclique or hypothesis h = k 3 2 decidable in time h ≤ 2 O(mk − ϵ ) for some and ϵ > 0 h < k ≤ 1 2 3 4 k

  28. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1} h 4 require time mk − o(1) h = k under the Hyperclique hypothesis 3 2 < h < k 2 decidable in time h ≤ 2 O(mk − ϵ ) for some and ϵ > 0 h < k ≤ 1 2 3 4 k

  29. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1} h require time mk − o(1) under SETH [GIKW ’17] 4 require time mk − o(1) h = k under the Hyperclique hypothesis 3 2 < h < k 2 decidable in time h ≤ 2 O(mk − ϵ ) for some and ϵ > 0 h < k ≤ 1 2 3 4 k

  30. Our Main Result: A Classification of ∃ k ∀ -Quantified Graph Properties The hardness of ψ is the largest number ∃ x 1 . . . ∃ x k ∀ y: ψ = h ∈ {0, . . . , k}, such that φ (E(x 1 , y), . . . , E(x k , y)) “ ψ is h-OV-like ” Boolean function φ : {0, 1}k → {0, 1} h require time mk − o(1) under SETH [GIKW ’17] 4 require time mk − o(1) h = k under the Hyperclique hypothesis 3 2 < h < k 2 2 = h < k decidable in time O(mk − ϵ ) for some ϵ > 0 ≤ 1 h ≤ 1 2 3 4 k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend