antipodal monochromatic paths in hypercubes
play

Antipodal monochromatic paths in hypercubes Tom Hons, Marian Poljak, - PowerPoint PPT Presentation

. . . . . . . . . . . . . . . Antipodal monochromatic paths in hypercubes Tom Hons, Marian Poljak, Tung Anh Vu Mentor: Ron Holzman 2020 DIMACS REU program, 2020/06/01 This work was carried out while the authors were


  1. . . . . . . . . . . . . . . . Antipodal monochromatic paths in hypercubes Tomáš Hons, Marian Poljak, Tung Anh Vu Mentor: Ron Holzman 2020 DIMACS REU program, 2020/06/01 This work was carried out while the authors were participants in the 2020 DIMACS REU program, supported by CoSP, a project funded by European Union’s Horizon 2020 research and innovation programme, grant agreement . . . . . . . . . . . . . . . . . . . . . . . . . No. 823748.

  2. . 1 . . . . . . . . . Hypercubes 0 00 . 01 10 11 000 001 010 011 100 101 110 111 Defjnition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure: From left to right, graphs Q 1 , Q 2 and Q 3 . The n -dimensional hypercube Q n is an undirected graph with V ( Q n ) = { 0 , 1 } n and E ( Q n ) = { ( u , v ) : u and v difger in exactly one coordinate } .

  3. . 100 . . . . . . . Antipodal vertices 000 001 010 011 101 . 110 111 000 001 010 011 100 101 110 111 Figure: Q 3 , antipodal vertices are marked with the same color. Defjnition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is the vertex which difgers from u in every coordinate. Let u be a vertex of the hypercube Q n . Its antipodal vertex u ′

  4. . 100 . . . . . . . Antipodal edges 000 001 010 011 101 . 110 111 000 001 010 011 100 101 110 111 line. Defjnition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure: An example of a pair of antipodal edges in Q 3 is drawn by a thick Let e = ( u , v ) be an edge of the hypercube Q n . Its antipodal edge is the edge e ′ = ( u ′ , v ′ ) .

  5. . . . . . . . . . . . . . . Colorings Defjnition 000 001 010 011 100 101 110 111 . . . . . . . . . . . . . . . . . . . . . . . . . . Figure: A 2-coloring of Q 3 . An edge 2 -coloring is any mapping c : E ( Q n ) → { red, blue } .

  6. . of antipodal vertices such that there is a monochromatic path . . . . . . . . . Question Given any edge 2-coloring of a Q n , is there always a pair connecting them? . 000 001 010 011 100 101 110 111 011 100 101 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure: A 2-coloring of Q 3 .

  7. . of antipodal vertices such that there is a monochromatic path . . . . . . . . . Question Given any edge 2-coloring of a Q n , is there always a pair connecting them? . 000 001 010 011 100 101 110 111 011 100 101 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure: A 2-coloring of Q 3 .

  8. . . . . . . . . . . . . . . . . Not really :( 00 01 10 11 Figure: A possible coloring of Q 2 . . . . . . . . . . . . . . . . . . . . . . . . . Thank you for your attention!

  9. . . . . . . . . . . . . . . . Antipodal colorings Defjnition An edge 2-coloring is antipodal if all pairs of antipodal edges have difgerent colors. 00 01 10 11 . . . . . . . . . . . . . . . . . . . . . . . . . Figure: The only antipodal coloring of Q 2 .

  10. . . . . . . . . . . . . . . . . . . Conjecture (S. Norine) Note . . . . . . . . . . . . . . . . . . . . . . For any antipodal coloring of a hypercube Q n there always exists a pair of antipodal vertices x , x ′ ∈ V ( Q n ) such that there is a monochromatic path connecting x and x ′ . This conjecture has been verifjed for n ≤ 6 (see [WW19]).

  11. . . . . . . . . . . . . . . . . . Loosening antipodality Defjnition does not have to be antipodal. Norine’s conjecture restated : Is there always a 0-switch path . . . . . . . . . . . . . . . . . . . . . . . colorings? A path P is a k-switch path for some k ≥ 0 if P is a concatenation of at most k + 1 monochromatic paths. Note that the coloring between some pair of antipodal vertices of Q n for all antipodal

  12. . . . . . . . . . . . . . . . . . Loosening antipodality Conjecture (T. Feder, C. Subi) [FS13] Note holds, it implies Norine’s conjecture. . . . . . . . . . . . . . . . . . . . . . . . 1 Not necessarily antipodal. For any coloring 1 of a hypercube Q n there always exists a pair of antipodal vertices x , x ′ ∈ V ( Q n ) such that there is a 1-switch path connecting x and x ′ . This conjecture has been verifjed for n ≤ 5 in [FS13] and if it

  13. of antipodal vertices in Q n for fjxed n . . . . . . . . . . . . . Possible approaches . Current best bound: 3 8 o 1 n by V. Dvořák [Dvo19]. Generalize the conjecture to more general graphs than hypercubes (see [Sol17]). Determine the expected number of switches over all pairs Fix a pair of antipodal vertices x x in Q n . Determine the average number of switches between x and x all possible . . . . . . . . . . . . . . . . . . . . . . . . . . . colorings. ▶ Find an upper bound on the number of switches.

  14. of antipodal vertices in Q n for fjxed n . . . . . . . . . . . . . . . . Possible approaches n by V. Dvořák [Dvo19]. Generalize the conjecture to more general graphs than hypercubes (see [Sol17]). Determine the expected number of switches over all pairs Fix a pair of antipodal vertices x x in Q n . Determine the average number of switches between x and x all possible . . . . . . . . . . . . . . . . . . . . . . colorings. . . . ▶ Find an upper bound on the number of switches. ( 3 ) ▶ Current best bound: 8 + o ( 1 )

  15. of antipodal vertices in Q n for fjxed n . . . . . . . . . . . . . . . . Possible approaches n by V. Dvořák [Dvo19]. hypercubes (see [Sol17]). Determine the expected number of switches over all pairs Fix a pair of antipodal vertices x x in Q n . Determine the average number of switches between x and x all possible . . . . . . . . . . . . . . . . . . . . . . colorings. . . . ▶ Find an upper bound on the number of switches. ( 3 ) ▶ Current best bound: 8 + o ( 1 ) ▶ Generalize the conjecture to more general graphs than

  16. . . . . . . . . . . . . . . . . Possible approaches n by V. Dvořák [Dvo19]. hypercubes (see [Sol17]). Fix a pair of antipodal vertices x x in Q n . Determine the average number of switches between x and x all possible . . . . . . . . . . . . . . . . . . . . colorings. . . . . ▶ Find an upper bound on the number of switches. ( 3 ) ▶ Current best bound: 8 + o ( 1 ) ▶ Generalize the conjecture to more general graphs than ▶ Determine the expected number of switches over all pairs of antipodal vertices in Q n for fjxed n .

  17. . . . . . . . . . . . . . . . . . Possible approaches n by V. Dvořák [Dvo19]. hypercubes (see [Sol17]). . . . . . . . . . . . . . . . . . . colorings. . . . . . ▶ Find an upper bound on the number of switches. ( 3 ) ▶ Current best bound: 8 + o ( 1 ) ▶ Generalize the conjecture to more general graphs than ▶ Determine the expected number of switches over all pairs of antipodal vertices in Q n for fjxed n . ▶ Fix a pair of antipodal vertices x , x ′ in Q n . Determine the average number of switches between x and x ′ all possible

  18. . References . . . . . . . . . . Vojtěch Dvořák. . A note on Norine’s antipodal-colouring conjecture. arXiv preprint arXiv:1912.07504 , 2019. Tomás Feder and Carlos Subi. On hypercube labellings and antipodal monochromatic paths. Discrete Applied Mathematics , 161(10-11):1421–1426, 2013. Daniel Soltész. On the 1-switch conjecture. Discrete Mathematics , 340(7):1749–1756, 2017. Douglas B West and Jennifer I Wise. Antipodal edge-colorings of hypercubes. Discussiones Mathematicae Graph Theory , 39(1):271–284, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2019.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend