logical foundations of cyber physical systems
play

Logical Foundations of Cyber-Physical Systems Andr Platzer Andr - PowerPoint PPT Presentation

13: Differential Invariants & Proof Theory Logical Foundations of Cyber-Physical Systems Andr Platzer Logical Foundations of Cyber-Physical Systems Andr Platzer Andr Platzer (CMU) LFCPS/13: Differential Invariants & Proof


  1. Propositional Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is a propositional tautology then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. ∗ [:=] Q ⊢ [ x ′ := f ( x )]( F ) ′ F ↔ G propositionally equivalent, so ( F ) ′ ↔ ( G ) ′ propositionally equivalent G ⊢ [ x ′ = f ( x )& Q ] G dI since ( F 1 ∧ F 2 ) ′ ≡ ( F 1 ) ′ ∧ ( F 2 ) ′ . . . MR,cut F ⊢ [ x ′ = f ( x )& Q ] F Can use any propositional normal form André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 7 / 23

  2. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  3. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  4. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  5. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. ⊢ 0 ≤ − x ∧− x ≤ 0 [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  6. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. not valid ⊢ 0 ≤ − x ∧− x ≤ 0 [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  7. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. not valid ⊢ 0 ≤ − x ∧− x ≤ 0 [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) dI x 2 ≤ 5 2 ⊢ [ x ′ = − x ] x 2 ≤ 5 2 arithmetic equivalence − 5 ≤ x ∧ x ≤ 5 ↔ x 2 ≤ 5 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  8. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. not valid ⊢ 0 ≤ − x ∧− x ≤ 0 [:=] [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) ⊢ [ x ′ := − x ] 2 xx ′ ≤ 0 dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) dI x 2 ≤ 5 2 ⊢ [ x ′ = − x ] x 2 ≤ 5 2 arithmetic equivalence − 5 ≤ x ∧ x ≤ 5 ↔ x 2 ≤ 5 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  9. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. not valid R ⊢ 0 ≤ − x ∧− x ≤ 0 ⊢ − x 2 x ≤ 0 [:=] [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) ⊢ [ x ′ := − x ] 2 xx ′ ≤ 0 dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) dI x 2 ≤ 5 2 ⊢ [ x ′ = − x ] x 2 ≤ 5 2 arithmetic equivalence − 5 ≤ x ∧ x ≤ 5 ↔ x 2 ≤ 5 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  10. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. ∗ not valid R ⊢ 0 ≤ − x ∧− x ≤ 0 ⊢ − x 2 x ≤ 0 [:=] [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) ⊢ [ x ′ := − x ] 2 xx ′ ≤ 0 dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) dI x 2 ≤ 5 2 ⊢ [ x ′ = − x ] x 2 ≤ 5 2 arithmetic equivalence − 5 ≤ x ∧ x ≤ 5 ↔ x 2 ≤ 5 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  11. Arithmetic Equivalences of Differential Invariants Lemma (Differential invariants and propositional logic) If F ↔ G is real-arithmetic equivalence then F differential invariant of x ′ = f ( x )& Q G differential invariant of x ′ = f ( x )& Q iff Proof. ∗ not valid R ⊢ 0 ≤ − x ∧− x ≤ 0 ⊢ − x 2 x ≤ 0 [:=] [:=] ⊢ [ x ′ := − x ]( 0 ≤ x ′ ∧ x ′ ≤ 0 ) ⊢ [ x ′ := − x ] 2 xx ′ ≤ 0 dI − 5 ≤ x ∧ x ≤ 5 ⊢ [ x ′ = − x ]( − 5 ≤ x ∧ x ≤ 5 ) dI x 2 ≤ 5 2 ⊢ [ x ′ = − x ] x 2 ≤ 5 2 Despite arithmetic equivalence − 5 ≤ x ∧ x ≤ 5 ↔ x 2 ≤ 5 2 Differential structure matters! Higher degree helps here André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 8 / 23

  12. Different Differential Structure for Equivalent Solutions ≥ 0 p � p 8 15 6 4 10 2 4 x � 3 � 2 � 1 1 2 3 5 � 2 � 4 4 x � 3 � 2 � 1 1 2 3 � 6 p p � 4000 3000 3000 2000 1000 2000 4 x � 3 � 2 � 1 1 2 3 1000 � 1000 � 2000 4 x � 3 � 2 � 1 1 2 3 p � p 30 20 25 10 20 15 6 x � 2 2 4 10 � 10 5 6 x � 2 2 4 � 20 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 9 / 23

  13. Different Differential Structure for Equivalent Solutions ≥ 0 Same p ≥ 0. p � p 8 15 But different p ′ ≥ 0. 6 4 10 2 4 x � 3 � 2 � 1 1 2 3 5 � 2 � 4 4 x � 3 � 2 � 1 1 2 3 � 6 p p � 4000 3000 3000 2000 1000 2000 4 x � 3 � 2 � 1 1 2 3 1000 � 1000 � 2000 4 x � 3 � 2 � 1 1 2 3 p � p 30 20 25 10 20 15 6 x � 2 2 4 10 � 10 5 6 x � 2 2 4 � 20 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 9 / 23

  14. Different Differential Structure for Equivalent Solutions ≥ 0 Same p ≥ 0. p � p 8 15 But different p ′ ≥ 0. 6 4 10 2 Can still normalize 4 x � 3 � 2 � 1 1 2 3 5 � 2 atomic formulas to � 4 4 x e = 0 , e ≥ 0 , e > 0 � 3 � 2 � 1 1 2 3 � 6 p p � 4000 3000 3000 2000 1000 2000 4 x � 3 � 2 � 1 1 2 3 1000 � 1000 � 2000 4 x � 3 � 2 � 1 1 2 3 p � p 30 20 25 10 20 15 6 x � 2 2 4 10 � 10 5 6 x � 2 2 4 � 20 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 9 / 23

  15. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = DI = , ∧ , ∨ Proof core. Full: [6, 2]. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  16. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  17. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 e 1 = e 2 ∧ k 1 = k 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  18. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  19. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  20. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  21. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  22. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  23. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 ( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ � [ x ′ := f ( x )] � André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  24. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 ( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ � [ x ′ := f ( x )] � (( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 ) ′ = 0 So [ x ′ := f ( x )] � � ≡ [ x ′ := f ( x )] 2 ( e 1 − e 2 )(( e 1 ) ′ − ( e 2 ) ′ )+ 2 ( k 1 − k 2 )(( k 1 ) ′ − ( k 2 ) ′ )= 0 � � André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  25. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 ( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ � [ x ′ := f ( x )] � (( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 ) ′ = 0 So [ x ′ := f ( x )] � � ≡ [ x ′ := f ( x )] 2 ( e 1 − e 2 )(( e 1 ) ′ − ( e 2 ) ′ )+ 2 ( k 1 − k 2 )(( k 1 ) ′ − ( k 2 ) ′ )= 0 � � André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  26. Differential Invariant Equations Proposition (Equational deductive power [6, 2]) DI = ≡ DI = , ∧ , ∨ atomic equations are enough: Proof core. Full: [6, 2]. e 1 = e 2 ∨ k 1 = k 2 ↔ ( e 1 − e 2 )( k 1 − k 2 ) = 0 [ x ′ := f ( x )](( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ ) So [ x ′ := f ( x )](( e 1 − e 2 )( k 1 − k 2 )) ′ = 0 (( e 1 ) ′ − ( e 2 ) ′ )( k 1 − k 2 )+( e 1 − e 2 )(( k 1 ) ′ − ( k 2 ) ′ ) = 0 ≡ [ x ′ := f ( x )] � � e 1 = e 2 ∧ k 1 = k 2 ↔ ( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 = 0 ( e 1 ) ′ = ( e 2 ) ′ ∧ ( k 1 ) ′ = ( k 2 ) ′ � [ x ′ := f ( x )] � (( e 1 − e 2 ) 2 +( k 1 − k 2 ) 2 ) ′ = 0 So [ x ′ := f ( x )] � � ≡ [ x ′ := f ( x )] 2 ( e 1 − e 2 )(( e 1 ) ′ − ( e 2 ) ′ )+ 2 ( k 1 − k 2 )(( k 1 ) ′ − ( k 2 ) ′ )= 0 � � André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 10 / 23

  27. Equational Proposition (Equational [2]) DI = ≡ DI = , ∧ , ∨ DI DI ≥ DI = Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  28. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  29. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  30. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  31. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  32. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = R ⊢ 5 ≥ 0 ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  33. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ∗ R ⊢ 5 ≥ 0 ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 11 / 23

  34. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 1 2 4 a c e b d f Example (Vector Spaces Isomorphic or Not) y ′ y x ′ x André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  35. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 1 2 4 a c e b d f Example (Vector Spaces Isomorphic or Not) y ′ y x ′ x André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  36. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 5 1 2 4 1 2 3 4 6 a c e a c e b d f b d Example (Vector Spaces Isomorphic or Not) y ′ y x ′ x André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  37. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 5 1 2 4 1 2 3 4 6 a c e a c e b d f b d criterion: cardinality |{ 1 ,..., 6 }| = 6 � = |{ a , b , c , d , e }| = 5 Need an indirect criterion especially if these sets are infinite Example (Vector Spaces Isomorphic or Not) y ′ y x ′ x André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  38. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 5 1 2 4 1 2 3 4 6 a c e a c e b d f b d criterion: cardinality |{ 1 ,..., 6 }| = 6 � = |{ a , b , c , d , e }| = 5 Need an indirect criterion especially if these sets are infinite Example (Vector Spaces Isomorphic or Not) y ′ y x ′ x André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  39. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 5 1 2 4 1 2 3 4 6 a c e a c e b d f b d criterion: cardinality |{ 1 ,..., 6 }| = 6 � = |{ a , b , c , d , e }| = 5 Need an indirect criterion especially if these sets are infinite Example (Vector Spaces Isomorphic or Not) y ′ y ′ y y x ′ x ′ x x z André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  40. Proving Differences in Set Theory & Linear Algebra Example (Sets Bijective or Not) 3 5 6 5 1 2 4 1 2 3 4 6 a c e a c e b d f b d criterion: cardinality |{ 1 ,..., 6 }| = 6 � = |{ a , b , c , d , e }| = 5 Need an indirect criterion especially if these sets are infinite Example (Vector Spaces Isomorphic or Not) y ′ y ′ y y x ′ x ′ x x criterion: dimension 3 � = 2 z André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 12 / 23

  41. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ∗ R ⊢ 5 ≥ 0 ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  42. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ∗ R ⊢ 5 ≥ 0 ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 cut,MR André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  43. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ∗ R ⊢ 5 ≥ 0 p ( x ) = 0 ⊢ [ x ′ = 5 ] p ( x ) = 0 dI ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 cut,MR André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  44. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ∗ ⊢ [ x ′ := 5 ]( p ( x )) ′ = 0 R ⊢ 5 ≥ 0 p ( x ) = 0 ⊢ [ x ′ = 5 ] p ( x ) = 0 dI ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 cut,MR André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  45. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ??? ∗ ⊢ [ x ′ := 5 ]( p ( x )) ′ = 0 R ⊢ 5 ≥ 0 p ( x ) = 0 ⊢ [ x ′ = 5 ] p ( x ) = 0 dI ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 cut,MR André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  46. Equational Incompleteness Proposition (Equational incompleteness [2]) DI = ≡ DI = , ∧ , ∨ < DI since DI ≥ �≤ DI = Equations are not enough: Proof core. Provable with DI ≥ Unprovable with DI = ??? ∗ ⊢ [ x ′ := 5 ]( p ( x )) ′ = 0 R ⊢ 5 ≥ 0 p ( x ) = 0 ⊢ [ x ′ = 5 ] p ( x ) = 0 dI ⊢ [ x ′ := 5 ] x ′ ≥ 0 [:=] x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 dI x ≥ 0 ⊢ [ x ′ = 5 ] x ≥ 0 cut,MR Univariate polynomial p ( x ) is 0 if 0 on all x ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 13 / 23

  47. Strict Inequality Proposition (Strict barrier ) DI > DI DI = DI > Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  48. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  49. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  50. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  51. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  52. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > R ⊢ 2 vw + 2 w ( − v ) = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  53. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > ∗ R ⊢ 2 vw + 2 w ( − v ) = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  54. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > ∗ e > 0 is open set. R ⊢ 2 vw + 2 w ( − v ) = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 v 2 + w 2 = c 2 is a closed set closed v 2 + w 2 ≤ 1 open v 2 + w 2 < 1 with full boundary without boundary André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  55. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > ∗ e > 0 is open set. R ⊢ 2 vw + 2 w ( − v ) = 0 Only true / false are ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] both dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 v 2 + w 2 = c 2 is a closed set closed v 2 + w 2 ≤ 1 open v 2 + w 2 < 1 with full boundary without boundary André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  56. Strict Inequality Incompleteness Proposition (Strict barrier incompleteness) DI > < DI because DI = �≤ DI > Strict inequalities are not enough: Proof core. Provable with DI = Unprovable with DI > ∗ e > 0 is open set. R ⊢ 2 vw + 2 w ( − v ) = 0 Only true / false are ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ + 2 ww ′ = 0 [:=] both dI v 2 + w 2 = c 2 ⊢ [ v ′ = w , w ′ = − v ] v 2 + w 2 = c 2 but don’t help proof v 2 + w 2 = c 2 is a closed set closed v 2 + w 2 ≤ 1 open v 2 + w 2 < 1 with full boundary without boundary André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 14 / 23

  57. Differential Invariant Equations to Inequalities Proposition (Equational ) DI = , ∧ , ∨ DI ≥ Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  58. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  59. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  60. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  61. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  62. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ ∗ Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  63. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ ∗ Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 dI − e 2 ≥ 0 ⊢ [ x ′ = f ( x )& Q ]( − e 2 ≥ 0 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  64. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ ∗ Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 Q ⊢ [ x ′ := f ( x )] − 2 e ( e ) ′ ≥ 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 dI − e 2 ≥ 0 ⊢ [ x ′ = f ( x )& Q ]( − e 2 ≥ 0 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  65. Differential Invariant Equations to Inequalities Proposition (Equational definability) DI = , ∧ , ∨ ≤ DI ≥ Equations are definable by weak inequalities: Proof core. Provable with DI = Provable with DI ≥ ∗ ∗ Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 Q ⊢ [ x ′ := f ( x )] − 2 e ( e ) ′ ≥ 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 dI − e 2 ≥ 0 ⊢ [ x ′ = f ( x )& Q ]( − e 2 ≥ 0 ) Local view of logic on differentials is crucial for this proof. Degree increases André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 15 / 23

  66. Differential Invariant Atoms Theorem (Atomic ) DI ≥ DI ≥ , ∧ , ∨ and DI > DI >, ∧ , ∨ Proof idea. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  67. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  68. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. Provable with DI ≥ , ∧ , ∨ Unprovable with DI ≥ André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  69. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. Provable with DI ≥ , ∧ , ∨ Unprovable with DI ≥ ∗ ⊢ 5 ≥ 0 ∧ y 2 ≥ 0 R [:=] ⊢ [ x ′ := 5 ][ y ′ := y 2 ]( x ′ ≥ 0 ∧ y ′ ≥ 0 ) dI x ≥ 0 ∧ y ≥ 0 ⊢ [ x ′ = 5 , y ′ = y 2 ]( x ≥ 0 ∧ y ≥ 0 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  70. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. Provable with DI ≥ , ∧ , ∨ Unprovable with DI ≥ p ( x , y ) ≥ 0 ↔ x ≥ 0 ∧ y ≥ 0 impossible since this implies ∗ p ( x , 0 ) ≥ 0 ↔ x ≥ 0 ⊢ 5 ≥ 0 ∧ y 2 ≥ 0 R so p ( x , 0 ) is 0 [:=] ⊢ [ x ′ := 5 ][ y ′ := y 2 ]( x ′ ≥ 0 ∧ y ′ ≥ 0 ) dI x ≥ 0 ∧ y ≥ 0 ⊢ [ x ′ = 5 , y ′ = y 2 ]( x ≥ 0 ∧ y ≥ 0 ) André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  71. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. Provable with DI ≥ , ∧ , ∨ Unprovable with DI ≥ p ( x , y ) ≥ 0 ↔ x ≥ 0 ∧ y ≥ 0 impossible since this implies ∗ p ( x , 0 ) ≥ 0 ↔ x ≥ 0 ⊢ 5 ≥ 0 ∧ y 2 ≥ 0 R so p ( x , 0 ) is 0 [:=] ⊢ [ x ′ := 5 ][ y ′ := y 2 ]( x ′ ≥ 0 ∧ y ′ ≥ 0 ) dI x ≥ 0 ∧ y ≥ 0 ⊢ [ x ′ = 5 , y ′ = y 2 ]( x ≥ 0 ∧ y ≥ 0 ) Substantial remaining parts of the proof shown elsewhere [2]. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  72. Differential Invariant Atoms Theorem (Atomic incompleteness) DI ≥ < DI ≥ , ∧ , ∨ and DI > < DI >, ∧ , ∨ Atomic inequalities not enough: Proof idea. Provable with DI ≥ , ∧ , ∨ Unprovable with DI ≥ p ( x , y ) ≥ 0 ↔ x ≥ 0 ∧ y ≥ 0 impossible since this implies ∗ p ( x , 0 ) ≥ 0 ↔ x ≥ 0 ⊢ 5 ≥ 0 ∧ y 2 ≥ 0 R so p ( x , 0 ) is 0 [:=] ⊢ [ x ′ := 5 ][ y ′ := y 2 ]( x ′ ≥ 0 ∧ y ′ ≥ 0 ) dI x ≥ 0 ∧ y ≥ 0 ⊢ [ x ′ = 5 , y ′ = y 2 ]( x ≥ 0 ∧ y ≥ 0 ) Substantial remaining parts of the proof shown elsewhere [2]. dC still possible here but more involved argument separates. André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  73. Outline Learning Objectives 1 Recap: Proofs for Differential Equations 2 3 Differential Equation Proof Theory Propositional Equivalences Differential Invariants & Arithmetic Differential Structure Differential Invariant Equations Equational Incompleteness Strict Differential Invariant Inequalities Differential Invariant Equations to Differential Invariant Inequalities Differential Invariant Atoms Differential Cut Power & Differential Ghost Power 4 5 Curves Playing with Norms and Degrees Summary 6 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 16 / 23

  74. Deductive Power of Differential Cuts & Differential Ghosts Theorem (Gentzen’s Cut Elimination) (1935) A ⊢ B ∨ C A ∧ C ⊢ B cut can be eliminated A ⊢ B Theorem (No Differential Cut Elimination) (LMCS 2012) Deductive power with differential cuts exceeds deductive power without. DI + DC > DI Theorem (Auxiliary Differential Variables) (LMCS 2012) Deductive power with differential ghosts exceeds power without. DI + DC + DG > DI + DC André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 17 / 23

  75. Ex: The Need for Differential Cuts dI x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 18 / 23

  76. Ex: The Need for Differential Cuts ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 3 x 2 x ′ ≥ 0 [:=] dI x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 18 / 23

  77. Ex: The Need for Differential Cuts ⊢ 3 x 2 (( x − 2 ) 4 + y 5 ) ≥ 0 ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 3 x 2 x ′ ≥ 0 [:=] dI x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 18 / 23

  78. Ex: The Need for Differential Cuts not valid ⊢ 3 x 2 (( x − 2 ) 4 + y 5 ) ≥ 0 ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 3 x 2 x ′ ≥ 0 [:=] dI x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 18 / 23

  79. Ex: The Need for Differential Cuts not valid ⊢ 3 x 2 (( x − 2 ) 4 + y 5 ) ≥ 0 ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 3 x 2 x ′ ≥ 0 [:=] dI x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 Have to know something about y 5 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 18 / 23

  80. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 19 / 23

  81. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 19 / 23

  82. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 19 / 23

  83. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ⊢ 5 y 4 y 2 ≥ 0 R ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 19 / 23

  84. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ∗ ⊢ 5 y 4 y 2 ≥ 0 R ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/13: Differential Invariants & Proof Theory LFCPS/13 19 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend