logical foundations of cyber physical systems
play

Logical Foundations of Cyber-Physical Systems Andr Platzer Andr - PowerPoint PPT Presentation

11: Differential Equations & Proofs Logical Foundations of Cyber-Physical Systems Andr Platzer Logical Foundations of Cyber-Physical Systems Andr Platzer Andr Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11


  1. Differential Substitution Lemmas ❀ Proofs Lemma (Differential lemma) (Differential value vs. Time-derivative) = x ′ = f ( x ) ∧ Q for duration r > 0 , then for all 0 ≤ z ≤ r, FV ( e ) ⊆ { x } : If ϕ | ] = d ϕ ( t )[ [ e ] ] [( e ) ′ ] ϕ ( z )[ ( z ) d t Lemma (Differential assignment) (Effect on Differentials) DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P Lemma (Derivations) (Equations of Differentials) ( e + k ) ′ = ( e ) ′ +( k ) ′ + ′ ( e · k ) ′ = ( e ) ′ · k + e · ( k ) ′ · ′ ( c ()) ′ = 0 c ′ ( x ) ′ = x ′ x ′ André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 9 / 24

  2. Differential Weakening x ¬ Q ν Q ω t r 0 x ′ = f ( x )& Q [ x ′ = f ( x )& Q ] = x ′ = f ( x ) ∧ Q [ ] = { ( ϕ ( 0 ) | { x ′ } ∁ , ϕ ( r )) : ϕ | for some ϕ : [ 0 , r ] → S , some r ∈ R } ODE ϕ ( z )( x ′ ) = d ϕ ( t )( x ) ( z ) d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  3. Differential Weakening x ¬ Q ν Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q [ x ′ = f ( x )& Q ] = x ′ = f ( x ) ∧ Q [ ] = { ( ϕ ( 0 ) | { x ′ } ∁ , ϕ ( r )) : ϕ | for some ϕ : [ 0 , r ] → S , some r ∈ R } ODE ϕ ( z )( x ′ ) = d ϕ ( t )( x ) ( z ) d t Differential equations cannot leave their domains. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  4. Differential Weakening x ¬ Q ν Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  5. Differential Weakening x ¬ Q ν Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) G ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ]( x ≥ 0 → 0 ≤ x ) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  6. Differential Weakening x ¬ Q ν Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) R ⊢ x ≥ 0 → 0 ≤ x G ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ]( x ≥ 0 → 0 ≤ x ) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  7. Differential Weakening x ¬ Q ν Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) ∗ R ⊢ x ≥ 0 → 0 ≤ x G ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ]( x ≥ 0 → 0 ≤ x ) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  8. Differential Weakening x Differential Weakening ¬ Q ν dW Γ ⊢ [ x ′ = f ( x )& Q ] P , ∆ Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) ∗ R ⊢ x ≥ 0 → 0 ≤ x G ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ]( x ≥ 0 → 0 ≤ x ) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  9. Differential Weakening x Differential Weakening ¬ Q ν Q ⊢ P dW Γ ⊢ [ x ′ = f ( x )& Q ] P , ∆ Q ω t r DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) 0 x ′ = f ( x )& Q Example (Bouncing ball) ∗ R ⊢ x ≥ 0 → 0 ≤ x G ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ]( x ≥ 0 → 0 ≤ x ) DW ⊢ [ x ′ = v , v ′ = − g & x ≥ 0 ] 0 ≤ x No need to solve any ODEs to prove that bouncing ball is above ground. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 10 / 24

  10. Differential Invariant Terms for Differential Equations Differential Invariant ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )] e = 0 ↔ e = 0 � ← [ x ′ = f ( x )]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  11. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  12. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) Proof (dI is a derived rule). DI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  13. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) Proof (dI is a derived rule). ⊢ [ x ′ = f ( x )& Q ]( e ) ′ = 0 DE DI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  14. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) Proof (dI is a derived rule). ⊢ [ x ′ = f ( x )& Q ][ x ′ := f ( x )]( e ) ′ = 0 DW ⊢ [ x ′ = f ( x )& Q ]( e ) ′ = 0 DE DI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  15. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) Proof (dI is a derived rule). ⊢ [ x ′ = f ( x )& Q ]( Q → [ x ′ := f ( x )]( e ) ′ = 0 ) G, → R ⊢ [ x ′ = f ( x )& Q ][ x ′ := f ( x )]( e ) ′ = 0 DW ⊢ [ x ′ = f ( x )& Q ]( e ) ′ = 0 DE DI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  16. Differential Invariant Terms for Differential Equations Differential Invariant Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 dI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 � [ x ′ = f ( x )& Q ] e = 0 ↔ [? Q ] e = 0 � ← [ x ′ = f ( x )& Q ]( e ) ′ = 0 DI DE [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ][ x ′ := f ( x )] P DW [ x ′ = f ( x )& Q ] P ↔ [ x ′ = f ( x )& Q ]( Q → P ) Proof (dI is a derived rule). Q ⊢ [ x ′ := f ( x )]( e ) ′ = 0 ⊢ [ x ′ = f ( x )& Q ]( Q → [ x ′ := f ( x )]( e ) ′ = 0 ) G, → R P ⊢ [ x ′ = f ( x )& Q ][ x ′ := f ( x )]( e ) ′ = 0 DW G [ α ] P ⊢ [ x ′ = f ( x )& Q ]( e ) ′ = 0 DE DI e = 0 ⊢ [ x ′ = f ( x )& Q ] e = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 11 / 24

  17. Differential Invariant Equations Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant dI e = k ⊢ [ x ′ = f ( x )] e = k André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 12 / 24

  18. Differential Invariant Equations Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant ⊢ [ x ′ := f ( x )]( e ) ′ = ( k ) ′ dI e = k ⊢ [ x ′ = f ( x )] e = k � [ x ′ = f ( x )] e = k ↔ e = k � ← [ x ′ = f ( x )]( e ) ′ = ( k ) ′ DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 12 / 24

  19. Differential Invariant Equations Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ = ( k ) ′ k dI e = k ⊢ [ x ′ = f ( x )] e = k 0 t � [ x ′ = f ( x )] e = k ↔ e = k � ← [ x ′ = f ( x )]( e ) ′ = ( k ) ′ DI Proof ( = rate of change from = initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] = ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 12 / 24

  20. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ ≥ ( k ) ′ k dI e ≥ k ⊢ [ x ′ = f ( x )] e ≥ k 0 t � [ x ′ = f ( x )] e ≥ k ↔ e ≥ k � ← [ x ′ = f ( x )]( e ) ′ ≥ ( k ) ′ DI Proof ( ≥ rate of change from ≥ initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] ≥ ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 13 / 24

  21. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant k e ⊢ [ x ′ := f ( x )]( e ) ′ ≤ ( k ) ′ dI e ≤ k ⊢ [ x ′ = f ( x )] e ≤ k 0 t � [ x ′ = f ( x )] e ≤ k ↔ e ≤ k � ← [ x ′ = f ( x )]( e ) ′ ≤ ( k ) ′ DI Proof ( ≤ rate of change from ≤ initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] ≤ ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 13 / 24

  22. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ > ( k ) ′ k dI e > k ⊢ [ x ′ = f ( x )] e > k 0 t � [ x ′ = f ( x )] e > k ↔ e > k � ← [ x ′ = f ( x )]( e ) ′ > ( k ) ′ DI Proof ( > rate of change from > initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] > ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 13 / 24

  23. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ ≥ ( k ) ′ k dI e > k ⊢ [ x ′ = f ( x )] e > k 0 t � [ x ′ = f ( x )] e > k ↔ e > k � ← [ x ′ = f ( x )]( e ) ′ ≥ ( k ) ′ DI Proof ( ≥ rate of change from > initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] ≥ ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 13 / 24

  24. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ � = ( k ) ′ k dI e � = k ⊢ [ x ′ = f ( x )] e � = k 0 t � [ x ′ = f ( x )] e � = k ↔ e � = k � ← [ x ′ = f ( x )]( e ) ′ � = ( k ) ′ DI Proof ( � = rate of change from � = initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] � = ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 14 / 24

  25. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant ⊢ [ x ′ := f ( x )]( e ) ′ � = ( k ) ′ k dI e � = k ⊢ [ x ′ = f ( x )] e � = k e 0 t � [ x ′ = f ( x )] e � = k ↔ e � = k � ← [ x ′ = f ( x )]( e ) ′ � = ( k ) ′ DI Proof ( � = rate of change from � = initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] � = ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 14 / 24

  26. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant ⊢ [ x ′ := f ( x )]( e ) ′ � = ( k ) ′ k dI e � = k ⊢ [ x ′ = f ( x )] e � = k e 0 t � [ x ′ = f ( x )] e � = k ↔ e � = k � ← [ x ′ = f ( x )]( e ) ′ � = ( k ) ′ DI Proof ( � = rate of change from � = initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] � = ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 14 / 24

  27. Differential Invariant Inequalities Lemma (Differential lemma) (Differential value vs. Time-derivative) ] = d ϕ ( t )[ [ e ] ] = x ′ = f ( x ) ∧ Q for r > 0 ⇒ ∀ [( e ) ′ ] ϕ | 0 ≤ z ≤ r ϕ ( z )[ ( z ) d t Differential Invariant e ⊢ [ x ′ := f ( x )]( e ) ′ = ( k ) ′ k dI e � = k ⊢ [ x ′ = f ( x )] e � = k 0 t � [ x ′ = f ( x )] e � = k ↔ e � = k � ← [ x ′ = f ( x )]( e ) ′ = ( k ) ′ DI Proof ( = rate of change from � = initial value. Mean-value theorem). d ϕ ( t )[ [ e ] ] ] = d ϕ ( t )[ [ k ] ] [( e ) ′ ] [( k ) ′ ] ( z ) = ϕ ( z )[ ] = ϕ ( z )[ ( z ) d t d t André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 14 / 24

  28. Example: Differential Invariant Inequalities ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  29. Example: Differential Invariant Inequalities: Oscillator ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 damped oscillator - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  30. Example: Differential Invariant Inequalities: Oscillator ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 damped oscillator - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  31. Example: Differential Invariant Inequalities: Oscillator ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 damped oscillator - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  32. Example: Differential Invariant Inequalities: Oscillator ∗ ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 damped oscillator - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  33. Example: Differential Invariant Inequalities: Oscillator ∗ ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 1 2 3 4 5 6 y - ��� � 0.5 - ��� � 1.0 - ��� � 1.5 damped oscillator - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 15 / 24

  34. Differential Invariant Conjunctions Differential Invariant dI A ∧ B ⊢ [ x ′ = f ( x )]( A ∧ B ) André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 16 / 24

  35. Differential Invariant Conjunctions v Differential Invariant dist( x , v ) ∧ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∧ B ⊢ [ x ′ = f ( x )]( A ∧ B ) x � [ x ′ = f ( x )]( A ∧ B ) ↔ ( A ∧ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 16 / 24

  36. Differential Invariant Conjunctions v Differential Invariant dist( x, v ) ∧ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∧ B ⊢ [ x ′ = f ( x )]( A ∧ B ) x � [ x ′ = f ( x )]( A ∧ B ) ↔ ( A ∧ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI Proof (separately). ⊢ [ x ′ = f ( x )]( A ) ′ ⊢ [ x ′ = f ( x )]( B ) ′ DI A ⊢ [ x ′ = f ( x )] A DI B ⊢ [ x ′ = f ( x )] B A ∧ B ⊢ [ x ′ = f ( x )]( A ∧ B ) [] ∧ ,WL [] ∧ [ α ]( P ∧ Q ) ↔ [ α ] P ∧ [ α ] Q André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 16 / 24

  37. Quantum’s Back for a Differential Invariant Proof 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  38. Quantum’s Back for a Differential Invariant Proof [] ∧ [ α ]( P ∧ Q ) ↔ [ α ] P ∧ [ α ] Q [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  39. Quantum’s Back for a Differential Invariant Proof x ≥ 0 ⊢ [ x ′ := v ][ v ′ := − g ] 2 gx ′ = − 2 vv ′ dI 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  40. Quantum’s Back for a Differential Invariant Proof x ≥ 0 ⊢ 2 gv = − 2 v ( − g ) [:=] x ≥ 0 ⊢ [ x ′ := v ][ v ′ := − g ] 2 gx ′ = − 2 vv ′ dI 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  41. Quantum’s Back for a Differential Invariant Proof ∗ R x ≥ 0 ⊢ 2 gv = − 2 v ( − g ) [:=] x ≥ 0 ⊢ [ x ′ := v ][ v ′ := − g ] 2 gx ′ = − 2 vv ′ dI 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  42. Quantum’s Back for a Differential Invariant Proof ∗ R x ≥ 0 ⊢ 2 gv = − 2 v ( − g ) [:=] x ≥ 0 ⊢ [ x ′ := v ][ v ′ := − g ] 2 gx ′ = − 2 vv ′ x ≥ 0 ⊢ x ≥ 0 dI 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 dW ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  43. Quantum’s Back for a Differential Invariant Proof ∗ R ∗ x ≥ 0 ⊢ 2 gv = − 2 v ( − g ) [:=] id x ≥ 0 ⊢ [ x ′ := v ][ v ′ := − g ] 2 gx ′ = − 2 vv ′ x ≥ 0 ⊢ x ≥ 0 dI 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ] 2 gx = 2 gH − v 2 dW ⊢ [ x ′′ = − g & x ≥ 0 ] x ≥ 0 [] ∧ 2 gx = 2 gH − v 2 ⊢ [ x ′′ = − g & x ≥ 0 ]( 2 gx = 2 gH − v 2 ∧ x ≥ 0 ) No solutions but still a proof. Simple proof with simple arithmetic. Independent proofs for independent questions. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 17 / 24

  44. Differential Invariant Conjunctions v Differential Invariant dist( x, v ) ∧ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∧ B ⊢ [ x ′ = f ( x )]( A ∧ B ) x � [ x ′ = f ( x )]( A ∧ B ) ↔ ( A ∧ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  45. Differential Invariant Disjunctions v Differential Invariant dist( x, v ) ∨ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∨ ( B ) ′ ) dI A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) x � [ x ′ = f ( x )]( A ∨ B ) ↔ ( A ∨ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∨ ( B ) ′ ) DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  46. Differential Invariant Disjunctions v Differential Invariant dist( x, v ) ∨ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∨ ( B ) ′ ) dI A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) x � [ x ′ = f ( x )]( A ∨ B ) ↔ ( A ∨ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∨ ( B ) ′ ) DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  47. Differential Invariant Disjunctions v Differential Invariant dist( x, v ) ∨ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) x � [ x ′ = f ( x )]( A ∨ B ) ↔ ( A ∨ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  48. Differential Invariant Disjunctions v Differential Invariant dist( x, v ) ∨ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) x � [ x ′ = f ( x )]( A ∨ B ) ↔ ( A ∨ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI Proof (separately). ⊢ [ x ′ = f ( x )]( A ) ′ ⊢ [ x ′ = f ( x )]( B ) ′ ∗ ∗ DI A ⊢ [ x ′ = f ( x )] A DI B ⊢ [ x ′ = f ( x )] B A ⊢ A ∨ B B ⊢ A ∨ B A ⊢ [ x ′ = f ( x )]( A ∨ B ) B ⊢ [ x ′ = f ( x )]( A ∨ B ) MR MR A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) ∨ L André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  49. Differential Invariant Disjunctions v Differential Invariant dist( x, v ) ∨ slow( v ) ⊢ [ x ′ := f ( x )](( A ) ′ ∧ ( B ) ′ ) dI A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) x � [ x ′ = f ( x )]( A ∨ B ) ↔ ( A ∨ B ) � ← [ x ′ = f ( x ))](( A ) ′ ∧ ( B ) ′ ) DI Proof (separately). ⊢ [ x ′ = f ( x )]( A ) ′ ⊢ [ x ′ = f ( x )]( B ) ′ ∗ ∗ DI A ⊢ [ x ′ = f ( x )] A DI B ⊢ [ x ′ = f ( x )] B A ⊢ A ∨ B B ⊢ A ∨ B A ⊢ [ x ′ = f ( x )]( A ∨ B ) B ⊢ [ x ′ = f ( x )]( A ∨ B ) MR MR A ∨ B ⊢ [ x ′ = f ( x )]( A ∨ B ) ∨ L [] ∧ [ α ]( P ∧ Q ) ↔ [ α ] P ∧ [ α ] Q André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 18 / 24

  50. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ α ] F loop F ⊢ [ α ∗ ] F André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  51. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F Example (Restrictions) v 2 − 2 v + 1 = 0 ⊢ [ v ′ = w , w ′ = − v ] v 2 − 2 v + 1 = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  52. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F Example (Restrictions) v 2 − 2 v + 1 = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ − 2 v ′ = 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ = w , w ′ = − v ] v 2 − 2 v + 1 = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  53. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F Example (Restrictions) v 2 − 2 v + 1 = 0 ⊢ 2 vw − 2 w = 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ − 2 v ′ = 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ = w , w ′ = − v ] v 2 − 2 v + 1 = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  54. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F Example (Restrictions) v v 2 − 2 v + 1 = 0 ⊢ 2 vw − 2 w = 0 w 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ − 2 v ′ = 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ = w , w ′ = − v ] v 2 − 2 v + 1 = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  55. Assuming Invariants F F ¬ ¬ F F ¬ F ¬ F Q → [ x ′ := f ( x )]( F ) ′ F ∧ Q → [ x ′ := f ( x )]( F ) ′ F ⊢ [ x ′ = f ( x )& Q ] F F ⊢ [ x ′ = f ( x )& Q ] F Example (Restrictions are unsound!) v (unsound) v 2 − 2 v + 1 = 0 ⊢ 2 vw − 2 w = 0 w 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ := w ][ w ′ := − v ] 2 vv ′ − 2 v ′ = 0 v 2 − 2 v + 1 = 0 ⊢ [ v ′ = w , w ′ = − v ] v 2 − 2 v + 1 = 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  56. Outline Learning Objectives 1 Differential Invariants 2 Recap: Ingredients for Differential Equation Proofs Soundness: Derivations Lemma Differential Weakening Equational Differential Invariants Differential Invariant Inequalities Disequational Differential Invariants Example Proof: Damped Oscillator Conjunctive Differential Invariants Disjunctive Differential Invariants Assuming Invariants Differential Cuts 3 Soundness 4 Summary 5 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 19 / 24

  57. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  58. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )] C F ⊢ [ x ′ = f ( x )] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  59. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )] C F ⊢ [ x ′ = f ( x )& C ] F F ⊢ [ x ′ = f ( x )] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  60. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  61. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  62. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  63. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  64. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Differential Cut André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  65. Differential Cuts Differential Cut F ⊢ [ x ′ = f ( x )& Q ] C F ⊢ [ x ′ = f ( x )& Q ∧ C ] F F ⊢ [ x ′ = f ( x )& Q ] F Proof (Soundness). Differential Cut = x ′ = f ( x ) ∧ Q starting in ω ∈ [ Let ϕ | [ F ] ] . [[ x ′ = f ( x )& Q ] C ] ω ∈ [ ] by left premise. = x ′ = f ( x ) ∧ Q ∧ C . Thus, ϕ | Thus, ϕ ( r ) ∈ [ [ F ] ] by second premise. André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 20 / 24

  66. Differential Cut Example: Increasingly Damped Oscillator dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  67. Differential Cut Example: Increasingly Damped Oscillator dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 1.0 ��� x ��� 0.5 ��� 0.0 1 2 3 4 5 6 y - ��� - 0.5 - ��� - 1.0 - ��� increasingly damped oscillator - 1.5 - ��� - ��� - ��� ��� ��� ��� ��� André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  68. Differential Cut Example: Increasingly Damped Oscillator dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  69. Differential Cut Example: Increasingly Damped Oscillator dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  70. Differential Cut Example: Increasingly Damped Oscillator dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  71. Differential Cut Example: Increasingly Damped Oscillator dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  72. Differential Cut Example: Increasingly Damped Oscillator dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 ∗ R ω ≥ 0 ⊢ 7 ≥ 0 ask [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  73. Differential Cut Example: Increasingly Damped Oscillator ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 [:=] dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 ∗ R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  74. Differential Cut Example: Increasingly Damped Oscillator R ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 [:=] dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 ∗ R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  75. Differential Cut Example: Increasingly Damped Oscillator ∗ R ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 [:=] dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 DC ∗ R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 increasingly damped oscillator André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  76. Differential Cut Example: Increasingly Damped Oscillator ∗ R ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 [:=] dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 ∗ init R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  77. Differential Cut Example: Increasingly Damped Oscillator ∗ R ω ≥ 0 ∧ d ≥ 0 ⊢ 2 ω 2 xy + 2 y ( − ω 2 x − 2 d ω y ) ≤ 0 ω ≥ 0 ∧ d ≥ 0 ⊢ [ x ′ := y ][ y ′ := − ω 2 x − 2 d ω y ] 2 ω 2 xx ′ + 2 yy ′ ≤ 0 [:=] dI ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ∧ d ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 dC ω 2 x 2 + y 2 ≤ c 2 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] ω 2 x 2 + y 2 ≤ c 2 ∗ init R ω ≥ 0 ⊢ 7 ≥ 0 [:=] ω ≥ 0 ⊢ [ d ′ := 7 ] d ′ ≥ 0 dI d ≥ 0 ⊢ [ x ′ = y , y ′ = − ω 2 x − 2 d ω y , d ′ = 7 & ω ≥ 0 ] d ≥ 0 Could repeatedly diffcut in formulas to help the proof André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 21 / 24

  78. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 22 / 24

  79. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 22 / 24

  80. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 22 / 24

  81. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ⊢ 5 y 4 y 2 ≥ 0 R ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 22 / 24

  82. Ex: Differential Cuts dC x 3 ≥ − 1 ∧ y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] x 3 ≥ − 1 ∗ ⊢ 5 y 4 y 2 ≥ 0 R ⊢ [ x ′ :=( x − 2 ) 4 + y 5 ][ y ′ := y 2 ] 5 y 4 y ′ ≥ 0 [:=] dI y 5 ≥ 0 ⊢ [ x ′ = ( x − 2 ) 4 + y 5 , y ′ = y 2 ] y 5 ≥ 0 André Platzer (CMU) LFCPS/11: Differential Equations & Proofs LFCPS/11 22 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend