log gases on a quadratic lattice via discrete loop
play

Log-gases on a quadratic lattice via discrete loop equations Alisa - PowerPoint PPT Presentation

Tiling model Log-gases on a quadratic lattice via discrete loop equations Alisa Knizel Columbia University Joint work with Evgeni Dimitrov April 11, 2019 1 / 35 Tiling model Log-gases on a quadratic lattice Fix S R , N 0 and w : S


  1. Tiling model Log-gases on a quadratic lattice via discrete loop equations Alisa Knizel Columbia University Joint work with Evgeni Dimitrov April 11, 2019 1 / 35

  2. Tiling model Log-gases on a quadratic lattice Fix S Ă R , N ą 0 and w : S Ñ R ě 0 , w p x q ě 0 . We consider a class of probability measures P N p S , w q on all N -point subsets of S of the form N p ℓ i ´ ℓ j q 2 ¨ ź ź P N p ℓ 1 , ℓ 2 , . . . , ℓ n q9 w p ℓ i q , 1 ď i ă j ď N i “ 1 where ℓ i P S for i “ 1 , . . . , N , where S “ t q ´ x ` uq x : 0 ď x ď M u with q P p 0 , 1 q , x , M P Z ě 0 and u P r 0 , 1 q . 2 / 35

  3. Tiling model Tiling model Lozenge tilings of a hexagon can be viewed as stepped surfaces. 3 / 35

  4. Tiling model Tiling model Consider the probability measure on the set of tilings defined by ω p T q ź P p T q “ Z p a , b , c q , where ω p T q “ ω p ✸ q . ✸ P T 4 / 35

  5. Tiling model Tiling model Consider the probability measure on the set of tilings defined by ω p T q ź P p T q “ Z p a , b , c q , where ω p T q “ ω p ✸ q . ✸ P T • If we set ω p ✸ q “ 1 we will obtain the uniform measure . 4 / 35

  6. Tiling model Tiling model Consider the probability measure on the set of tilings defined by ω p T q ź P p T q “ Z p a , b , c q , where ω p T q “ ω p ✸ q . ✸ P T • If we set ω p ✸ q “ 1 we will obtain the uniform measure . • Let j be the coordinate of ✸ . Set ω p ✸ q “ q ´ j , 1 ą q ą 0 . 4 / 35

  7. Tiling model Tiling model Consider the probability measure on the set of tilings defined by ω p T q ź P p T q “ Z p a , b , c q , where ω p T q “ ω p ✸ q . ✸ P T • If we set ω p ✸ q “ 1 we will obtain the uniform measure . • Let j be the coordinate of ✸ . Set ω p ✸ q “ q ´ j , 1 ą q ą 0 . ω p T q “ const p a , b , c q ¨ q ´ volume . 4 / 35

  8. Tiling model Tiling model Consider the probability measure on the set of tilings defined by ω p T q ź P p T q “ Z p a , b , c q , where ω p T q “ ω p ✸ q . ✸ P T • If we set ω p ✸ q “ 1 we will obtain the uniform measure . • Let j be the coordinate of ✸ . Set ω p ✸ q “ q ´ j , 1 ą q ą 0 . ω p T q “ const p a , b , c q ¨ q ´ volume . • Let j be the coordinate of ✸ . Set ω p ✸ q “ κ q j ´ κ ´ 1 q ´ j , 1 ą q ą 0 . 4 / 35

  9. Tiling model Limit shape 5 / 35

  10. Tiling model Waterfall Figure: A simulation for a “ 80, b “ 80, c “ 80. On the left picture the parameters are κ 2 “ ´ 1 , q “ 0 . 8, and on the right picture the parameters are κ 2 “ ´ 1 , q “ 0 . 98 . 6 / 35

  11. Tiling model Affine transformation 7 / 35

  12. Tiling model Tiling model It establishes a bijection between tilings and non-intersecting paths: Let C p t q “ p x 1 , x 2 , . . . , x N q be the positions of nodes. 8 / 35

  13. Tiling model q-Racah ensemble Theorem (Borodin, Gorin, Rains ’2009) N ź ź p σ p x i q´ σ p x j qq 2 Prob t C p t q “ p x 1 , . . . , x N qu “ C ¨ w t p x i q , 0 ď i ă j ď M i “ 1 where σ p x i q “ q ´ x i ` u p κ, N , S , T q q x i and w t p x q is the weight function of the q-Racah polynomial ensemble up to a factor not depending on x. 9 / 35

  14. Tiling model Limit shape for domino and lozenze tilings • Law of Large Numbers for the height function [Cohn–Larsen–Propp ’98], [Cohn–Kenyon–Propp ’01], [Kenyon–Okounkov ’07] 10 / 35

  15. Tiling model Limit shape for domino and lozenze tilings • Law of Large Numbers for the height function [Cohn–Larsen–Propp ’98], [Cohn–Kenyon–Propp ’01], [Kenyon–Okounkov ’07] • Central Limit Theorem : convergence of the global fluctuations of the height function [Kenyon ’01], [Borodin–Ferrari ’08], [Petrov ’13], [Duse–Metcalfe ’14], [Bufetov–Gorin ’17], [Bufetov-K. ’17] 10 / 35

  16. Tiling model Regularity assumptions • Let q P p 0 , 1 q , M ě 1 and u P r 0 , 1 q . 11 / 35

  17. Tiling model Regularity assumptions • Let q P p 0 , 1 q , M ě 1 and u P r 0 , 1 q . • Let q N P p 0 , 1 q , M N P N and u N P r 0 , 1 q be sequences of parameters such that 11 / 35

  18. Tiling model Regularity assumptions • Let q P p 0 , 1 q , M ě 1 and u P r 0 , 1 q . • Let q N P p 0 , 1 q , M N P N and u N P r 0 , 1 q be sequences of parameters such that • M N ě N ´ 1 ˇ , | M N ´ N ¨ M | , N | u N ´ u | N 2 ˇ ˇ q N ´ q 1 { N ˇ • max ` ˘ ď A 1 , for some A 1 ą 0. 11 / 35

  19. Tiling model Regularity assumptions • Let q P p 0 , 1 q , M ě 1 and u P r 0 , 1 q . • Let q N P p 0 , 1 q , M N P N and u N P r 0 , 1 q be sequences of parameters such that • M N ě N ´ 1 ˇ , | M N ´ N ¨ M | , N | u N ´ u | N 2 ˇ ˇ q N ´ q 1 { N ˇ • max ` ˘ ď A 1 , for some A 1 ą 0. • Denote N µ N “ 1 ÿ δ p ℓ i q , N i “ 1 where p ℓ 1 , . . . , ℓ N q is P N ´ distributed with parameters q N , u N , M N . 11 / 35

  20. Tiling model Assumptions on the weight Let w p s ; N q “ exp p´ NV N p s qq , 12 / 35

  21. Tiling model Assumptions on the weight Let w p s ; N q “ exp p´ NV N p s qq , • V N is continuous on the intervals r 1 ` u N , q ´ M N ` u N q M N N s ; N 12 / 35

  22. Tiling model Assumptions on the weight Let w p s ; N q “ exp p´ NV N p s qq , • V N is continuous on the intervals r 1 ` u N , q ´ M N ` u N q M N N s ; N • For some positive constants A 2 , A 3 ą 0 | V N p s q ´ V p s q| ď A 2 ¨ N ´ 1 log p N q , where V is continuous and | V p s q| ď A 3 . 12 / 35

  23. Tiling model Assumptions on the weight Let w p s ; N q “ exp p´ NV N p s qq , • V N is continuous on the intervals r 1 ` u N , q ´ M N ` u N q M N N s ; N • For some positive constants A 2 , A 3 ą 0 | V N p s q ´ V p s q| ď A 2 ¨ N ´ 1 log p N q , where V is continuous and | V p s q| ď A 3 . • V p s q is differentiable and for some A 4 ą 0 1 ` | log | s ´ 1 ´ u || ` | log | s ´ q ´ M ´ uq M || ˇ V 1 p s q ˇ ď A 4 ¨ ˇ ˇ “ ‰ , 1 ` u , q ´ M ` uq M ‰ “ for s P . 12 / 35

  24. Tiling model Law of Large Numbers Theorem (Dimitrov-K. ’18) There is a deterministic, compactly supported and absolutely continuous probability measure µ p x q dx such that µ N concentrate p in probability q near µ . More precisely, for any Lipschitz function f p x q defined on a real neighborhood of the interval r 1 ` u , q ´ M ` uq M s and each ε ą 0 the random variables ˇ ˇ ż ż N 1 { 2 ´ ε ˇ ˇ f p x q µ N p dx q ´ f p x q µ p x q dx ˇ ˇ ˇ R R ˇ converge to 0 in probability and in the sense of moments. 13 / 35

  25. Tiling model Theorem (Dimitrov-K. ’18) Take m ě 1 polynomials f 1 , . . . , f m P R r x s and define „ż  ż L f i “ N f j p x q µ N p dx q´ N E P N f j p x q µ N p dx q for i “ 1 , . . . , m . R R Assume that the limit measure has one band, then under technical assumptions the random variables L f i converge jointly in the sense of moments to an m-dimensional centered Gaussian vector X “ p X 1 , . . . , X m q with covariance 1 ¿ ¿ Cov p X i , X j q “ f i p s q f j p t q C p s , t q dsdt , where p 2 π i q 2 Γ Γ ˜ ¸ 1 p s ´ α 1 qp t ´ β 1 q ` p t ´ α 1 qp s ´ β 1 q C p s , t q “ 1 ´ , 2 p s ´ t q 2 a a 2 p s ´ α 1 qp s ´ β 1 q p t ´ α 1 qp t ´ β 1 q where Γ is a positively oriented contour that encloses the interval r 1 ` u , q ´ M ` uq M s . 14 / 35

  26. Tiling model General β Let q P p 0 , 1 q , u P r 0 , 1 q , M ě N ´ 1 P Z , θ ą 0 . • Recall “ 1 ´ q x Γ q p x q “ p 1 ´ q q 1 ´ x p q ; q q 8 and satisfies Γ q p x ` 1 q 1 ´ q , p q x ; q q 8 Γ q p x q where p y ; q q k “ p 1 ´ y q · · · p 1 ´ yq k ´ 1 q . 15 / 35

  27. Tiling model General β Let q P p 0 , 1 q , u P r 0 , 1 q , M ě N ´ 1 P Z , θ ą 0 . • Recall “ 1 ´ q x Γ q p x q “ p 1 ´ q q 1 ´ x p q ; q q 8 and satisfies Γ q p x ` 1 q 1 ´ q , p q x ; q q 8 Γ q p x q where p y ; q q k “ p 1 ´ y q · · · p 1 ´ yq k ´ 1 q . • Let ℓ i “ q ´ λ i ` uq λ i , where λ i “ x i ` p i ´ 1 q θ, and 0 ď x 1 ď x 2 ď · · · ď x N ď M ´ N ` 1 . 15 / 35

  28. Tiling model General β Let q P p 0 , 1 q , u P r 0 , 1 q , M ě N ´ 1 P Z , θ ą 0 . • Recall “ 1 ´ q x Γ q p x q “ p 1 ´ q q 1 ´ x p q ; q q 8 and satisfies Γ q p x ` 1 q 1 ´ q , p q x ; q q 8 Γ q p x q where p y ; q q k “ p 1 ´ y q · · · p 1 ´ yq k ´ 1 q . • Let ℓ i “ q ´ λ i ` uq λ i , where λ i “ x i ` p i ´ 1 q θ, and 0 ď x 1 ď x 2 ď · · · ď x N ď M ´ N ` 1 . • Denote X θ N : “ tp ℓ 1 , . . . , ℓ N qu . 15 / 35

  29. Tiling model General β We consider probability measures on X θ N P N θ p ℓ 1 , . . . , ℓ N q “ 1 q 2 θλ j Γ q p λ j ´ λ i ` 1 q Γ q p λ j ´ λ i ` θ q ź Γ q p λ j ´ λ i q Γ q p λ j ´ λ i ` 1 ´ θ q × Z N 1 ď i ă j ď N N Γ q p λ j ` λ i ` v ` 1 q Γ q p λ j ` λ i ` v ` θ q ź ź × Γ q p λ j ` λ i ` v q Γ q p λ j ` λ i ` v ` 1 ´ θ q ¨ w p ℓ i q , 1 ď i ă j ď N i “ 1 v is such that q u “ v . 16 / 35

  30. Tiling model General β analogue Observe as q Ñ 1 ´ and q x Ñ y P r 0 , 1 q p q x ; q q Γ q p x ` α q “ p 1 ´ q q ´ α „ p 1 ´ q q ´ α p 1 ´ y q α . p q x ` α ; q q 8 Γ q p x q 17 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend