local universality of repulsive particle systems and
play

Local Universality of Repulsive Particle Systems and Random Matrices - PowerPoint PPT Presentation

Local Universality of Repulsive Particle Systems and Random Matrices Friedrich Gtze joint with M.Venker, A.Naumov and A.Tikhomirov Bielefeld University www.math.uni-bielefeld.de/ goetze Workshop Random Matrices and their


  1. Global Marginal Distributions � ρ h , k R N − k P h N , Q ( x 1 , . . . , x k ) := N , Q ( x ) dx k + 1 . . . dx N : the k -th correlation function of P h N , Q . Thm (G.-Venker ’12) For all h above exist α h > 0 s.th. for all Q above with min t ∈ R Q ′′ ( t ) > α h , there exists µ h Q , p-measure with compact support s.th. � � ⊗ k as N → ∞ , ( k -th correlation measure of P h µ h N , Q ) ⇒ Q F. Götze (Bielefeld) Local/Global Universality October 9, 2012 6 / 25

  2. Global Marginal Distributions � ρ h , k R N − k P h N , Q ( x 1 , . . . , x k ) := N , Q ( x ) dx k + 1 . . . dx N : the k -th correlation function of P h N , Q . Thm (G.-Venker ’12) For all h above exist α h > 0 s.th. for all Q above with min t ∈ R Q ′′ ( t ) > α h , there exists µ h Q , p-measure with compact support s.th. � � ⊗ k as N → ∞ , ( k -th correlation measure of P h µ h N , Q ) ⇒ Q i.e. for g ∈ C b ( R k ) F. Götze (Bielefeld) Local/Global Universality October 9, 2012 6 / 25

  3. Global Marginal Distributions � ρ h , k R N − k P h N , Q ( x 1 , . . . , x k ) := N , Q ( x ) dx k + 1 . . . dx N : the k -th correlation function of P h N , Q . Thm (G.-Venker ’12) For all h above exist α h > 0 s.th. for all Q above with min t ∈ R Q ′′ ( t ) > α h , there exists µ h Q , p-measure with compact support s.th. � � ⊗ k as N → ∞ , ( k -th correlation measure of P h µ h N , Q ) ⇒ Q i.e. for g ∈ C b ( R k ) � � R k g ( t ) ρ h , k N , Q ( t ) d k t = R k g ( t )( µ h Q ) ⊗ k ( dt ) . lim N →∞

  4. Global Marginal Distributions � ρ h , k R N − k P h N , Q ( x 1 , . . . , x k ) := N , Q ( x ) dx k + 1 . . . dx N : the k -th correlation function of P h N , Q . Thm (G.-Venker ’12) For all h above exist α h > 0 s.th. for all Q above with min t ∈ R Q ′′ ( t ) > α h , there exists µ h Q , p-measure with compact support s.th. � � ⊗ k as N → ∞ , ( k -th correlation measure of P h µ h N , Q ) ⇒ Q i.e. for g ∈ C b ( R k ) � � R k g ( t ) ρ h , k N , Q ( t ) d k t = R k g ( t )( µ h Q ) ⊗ k ( dt ) . lim N →∞ F. Götze (Bielefeld) Local/Global Universality October 9, 2012 6 / 25

  5. Local Correlations in the Bulk Thm (G.-Venker 2012, arxiv:1205.0671) Above assumptions on Q , h and α h > 0: F. Götze (Bielefeld) Local/Global Universality October 9, 2012 7 / 25

  6. Local Correlations in the Bulk Thm (G.-Venker 2012, arxiv:1205.0671) Above assumptions on Q , h and α h > 0: For k ≥ 1 and a ∈ supp ( µ h Q ) ◦ F. Götze (Bielefeld) Local/Global Universality October 9, 2012 7 / 25

  7. Local Correlations in the Bulk Thm (G.-Venker 2012, arxiv:1205.0671) Above assumptions on Q , h and α h > 0: For k ≥ 1 and a ∈ supp ( µ h Q ) ◦ density µ h Q ( a ) > 0, uniformly on compacts in t 1 , . . . , t k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 7 / 25

  8. Local Correlations in the Bulk Thm (G.-Venker 2012, arxiv:1205.0671) Above assumptions on Q , h and α h > 0: For k ≥ 1 and a ∈ supp ( µ h Q ) ◦ density µ h Q ( a ) > 0, uniformly on compacts in t 1 , . . . , t k � � 1 t 1 t k Q ( a ) k ρ h , k lim a + Q ( a ) , . . . , a + N , Q µ h N µ h N µ h Q ( a ) N →∞ F. Götze (Bielefeld) Local/Global Universality October 9, 2012 7 / 25

  9. Local Correlations in the Bulk Thm (G.-Venker 2012, arxiv:1205.0671) Above assumptions on Q , h and α h > 0: For k ≥ 1 and a ∈ supp ( µ h Q ) ◦ density µ h Q ( a ) > 0, uniformly on compacts in t 1 , . . . , t k � � 1 t 1 t k Q ( a ) k ρ h , k lim a + Q ( a ) , . . . , a + N , Q µ h N µ h N µ h Q ( a ) N →∞ � sin ( π ( t i − t j )) � = det . π ( t i − t j ) 1 ≤ i , j ≤ k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 7 / 25

  10. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  11. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. Assume that for some β > 0 and c > 0 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  12. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. Assume that for some β > 0 and c > 0 ϕ ( ε ) | ε | β = c . lim ε → 0 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  13. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. Assume that for some β > 0 and c > 0 ϕ ( ε ) | ε | β = c . lim ε → 0 Let Q be a strictly convex function of sufficient growth at infinity and define N , Q as the probability measure on R N with density P ϕ,β F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  14. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. Assume that for some β > 0 and c > 0 ϕ ( ε ) | ε | β = c . lim ε → 0 Let Q be a strictly convex function of sufficient growth at infinity and define N , Q as the probability measure on R N with density P ϕ,β � 1 ϕ ( x i − x j ) e − N � N P ϕ,β j = 1 Q ( x j ) dx . N , Q ( x ) := Z ϕ,β N , Q i < j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  15. Extensions to β -Ensembles Let ϕ be an even, smooth, nonnegative function with ϕ ( 0 ) = 0 and ϕ ( t ) > 0 for t � = 0. Assume that for some β > 0 and c > 0 ϕ ( ε ) | ε | β = c . lim ε → 0 Let Q be a strictly convex function of sufficient growth at infinity and define N , Q as the probability measure on R N with density P ϕ,β � 1 ϕ ( x i − x j ) e − N � N P ϕ,β j = 1 Q ( x j ) dx . N , Q ( x ) := Z ϕ,β N , Q i < j We conjecture that P ϕ,β N , Q has the same bulk local k -correlation, say ρ k β , as the Gaussian- β ensemble � N ( x ) := 1 | x k − x j | β e − N � N j = 1 x 2 P β j . Z β N j < k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 8 / 25

  16. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h : F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  17. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  18. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . Conditions on Q as above, there is µ Q ,β of compact support, semicircular for Q ( x ) = x 2 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  19. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . Conditions on Q as above, there is µ Q ,β of compact support, semicircular for Q ( x ) = x 2 and a scaled deformed correlation function F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  20. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . Conditions on Q as above, there is µ Q ,β of compact support, semicircular for Q ( x ) = x 2 and a scaled deformed correlation function � � 1 t 1 t k Q ,β ( a ) k ρ h , k a + Q ,β ( a ) , . . . , a + , (1) N , Q ,β µ h N µ h N µ h Q ,β ( a ) where a ∈ supp ( µ h Q ,β ( a )) ◦ . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  21. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . Conditions on Q as above, there is µ Q ,β of compact support, semicircular for Q ( x ) = x 2 and a scaled deformed correlation function � � 1 t 1 t k Q ,β ( a ) k ρ h , k a + Q ,β ( a ) , . . . , a + , (1) N , Q ,β µ h N µ h N µ h Q ,β ( a ) where a ∈ supp ( µ h Q ,β ( a )) ◦ . For h = 0 and Q = x 2 , F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  22. β -Ensembles Theorem ( Venker 2012) Write ϕ ( x ) := | x | β exp { h } , h real analytic and even Schwartz function, α h ≥ 0 s. th. for all real analytic, strongly convex and even Q with α Q > α h :The correlation measure ρ h , 1 N , Q ,β converges weakly to a compactly supported p.m. µ h Q ,β . Conditions on Q as above, there is µ Q ,β of compact support, semicircular for Q ( x ) = x 2 and a scaled deformed correlation function � � 1 t 1 t k Q ,β ( a ) k ρ h , k a + Q ,β ( a ) , . . . , a + , (1) N , Q ,β µ h N µ h N µ h Q ,β ( a ) where a ∈ supp ( µ h Q ,β ( a )) ◦ . For h = 0 and Q = x 2 , the limit N → ∞ exists for Q ( x ) = G ( x ) := x 2 and h = 0 by Valko-Virag (09). F. Götze (Bielefeld) Local/Global Universality October 9, 2012 9 / 25

  23. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  24. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : Theorem ( Venker 2012, arxiv 1209.317) h and Q as above. Let 0 < ξ ≤ 1 / 2 and s N := N − 1 + ξ . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  25. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : Theorem ( Venker 2012, arxiv 1209.317) h and Q as above. Let 0 < ξ ≤ 1 / 2 and s N := N − 1 + ξ . Q ,β ) ◦ , any a ′ supp ( µ G ,β ) ◦ , any smooth For k = 1 , 2 , . . . , any a ∈ supp ( µ h function f : R k − → R with compact support F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  26. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : Theorem ( Venker 2012, arxiv 1209.317) h and Q as above. Let 0 < ξ ≤ 1 / 2 and s N := N − 1 + ξ . Q ,β ) ◦ , any a ′ supp ( µ G ,β ) ◦ , any smooth For k = 1 , 2 , . . . , any a ∈ supp ( µ h function f : R k − → R with compact support � dt k f ( t ) lim N →∞ � � a + s N � � 1 t 1 t k Q ,β ( a ) k ρ h , k u + Q ,β ( a ) , . . . , u + µ h N , Q ,β N µ h N µ h Q ,β ( a ) a − s N F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  27. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : Theorem ( Venker 2012, arxiv 1209.317) h and Q as above. Let 0 < ξ ≤ 1 / 2 and s N := N − 1 + ξ . Q ,β ) ◦ , any a ′ supp ( µ G ,β ) ◦ , any smooth For k = 1 , 2 , . . . , any a ∈ supp ( µ h function f : R k − → R with compact support � dt k f ( t ) lim N →∞ � � a + s N � � 1 t 1 t k Q ,β ( a ) k ρ h , k u + Q ,β ( a ) , . . . , u + µ h N , Q ,β N µ h N µ h Q ,β ( a ) a − s N � � � a ′ + s N � 1 t 1 t k du µ G ,β ( a ′ ) k ρ k − u + N µ G ,β ( a ′ ) , . . . , u + N , G ,β N µ G ,β ( a ′ ) 2 s N a ′ − s N = 0 . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  28. Universality of Deformed (Averaged) Local Correlations of β -Ensembles Compare local correlations of P N , h M η with those of the Gaussian β -Ensemble P N , G ,β : Theorem ( Venker 2012, arxiv 1209.317) h and Q as above. Let 0 < ξ ≤ 1 / 2 and s N := N − 1 + ξ . Q ,β ) ◦ , any a ′ supp ( µ G ,β ) ◦ , any smooth For k = 1 , 2 , . . . , any a ∈ supp ( µ h function f : R k − → R with compact support � dt k f ( t ) lim N →∞ � � a + s N � � 1 t 1 t k Q ,β ( a ) k ρ h , k u + Q ,β ( a ) , . . . , u + µ h N , Q ,β N µ h N µ h Q ,β ( a ) a − s N � � � a ′ + s N � 1 t 1 t k du µ G ,β ( a ′ ) k ρ k − u + N µ G ,β ( a ′ ) , . . . , u + N , G ,β N µ G ,β ( a ′ ) 2 s N a ′ − s N = 0 . Local correlation limits using relaxation flow methods of Bourgade, Erd˝ os, B. Schlein, and H.-T. Yau (2011,2012) instead of potential theory. F. Götze (Bielefeld) Local/Global Universality October 9, 2012 10 / 25

  29. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  30. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j � � � � 1 � 2 exp {− α N � x i − x j P GUE x 2 N ,α ( x ) := j } , Z N ,α 1 ≤ i < j ≤ N j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  31. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j � � � � 1 � 2 exp {− α N � x i − x j P GUE x 2 N ,α ( x ) := j } , Z N ,α 1 ≤ i < j ≤ N j � ( x i − x j ) 2 } exp {− γ N M 2 ( x ) } exp { γ M 1 ( x ) 2 } , exp { γ = i < j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  32. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j � � � � 1 � 2 exp {− α N � x i − x j P GUE x 2 N ,α ( x ) := j } , Z N ,α 1 ≤ i < j ≤ N j � ( x i − x j ) 2 } exp {− γ N M 2 ( x ) } exp { γ M 1 ( x ) 2 } , exp { γ = where i < j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  33. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j � � � � 1 � 2 exp {− α N � x i − x j P GUE x 2 N ,α ( x ) := j } , Z N ,α 1 ≤ i < j ≤ N j � ( x i − x j ) 2 } exp {− γ N M 2 ( x ) } exp { γ M 1 ( x ) 2 } , exp { γ = where i < j N � x p M p ( x ) := j , p = 1 , 2 , j = 1 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  34. Proof: Simple Example h ( x ) := − x 2 and γ > 0 � Z − 1 N ,α,γ P GUE ( x i − x j ) 2 } , P γ N ,α ( x ) := N ,α ( x ) exp { γ i < j � � � � 1 � 2 exp {− α N � x i − x j P GUE x 2 N ,α ( x ) := j } , Z N ,α 1 ≤ i < j ≤ N j � ( x i − x j ) 2 } exp {− γ N M 2 ( x ) } exp { γ M 1 ( x ) 2 } , exp { γ = where i < j N � x p M p ( x ) := j , p = 1 , 2 , j = 1 � exp { ε √ γ M 1 ( x ) } exp {− ε 2 / 4 } d ε, exp { γ M 1 ( x ) 2 } = c R F. Götze (Bielefeld) Local/Global Universality October 9, 2012 11 / 25

  35. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  36. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  37. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 � � � γε 2 1 + γ Z N ,ε / Z N = α exp . 4 ( α + γ ) F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  38. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 � � � γε 2 1 + γ Z N ,ε / Z N = α exp . 4 ( α + γ ) exp {− N ( α + γ ) t 2 + ε √ γ t } Orthogonal polynomials w.r.t. the kernel are shifted Hermite polynomials. F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  39. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 � � � γε 2 1 + γ Z N ,ε / Z N = α exp . 4 ( α + γ ) exp {− N ( α + γ ) t 2 + ε √ γ t } Orthogonal polynomials w.r.t. the kernel are shifted Hermite polynomials. The ensemble P ε N is determinantal with kernel: F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  40. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 � � � γε 2 1 + γ Z N ,ε / Z N = α exp . 4 ( α + γ ) exp {− N ( α + γ ) t 2 + ε √ γ t } Orthogonal polynomials w.r.t. the kernel are shifted Hermite polynomials. The ensemble P ε N is determinantal with kernel: √ γ N ( t , s ) = exp { ω ′ 2 ε 2 ω ′ := 4 N } K N ( t − ω ′ ε 2 N , s − ω ′ ε K ∗ 2 N ) , α + γ F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  41. Orthogonal Polynomials � Z N ,ε P γ c ′ P N ,ε ( x ) exp {− ε 2 / 4 } d ε, N ,α ( x ) = Z N R N � ∆( x ) 2 j + √ γε x j ) } ( N ( α + γ ) x 2 P N ,ε ( x ) := exp {− Z N ,ε j = 1 � � � γε 2 1 + γ Z N ,ε / Z N = α exp . 4 ( α + γ ) exp {− N ( α + γ ) t 2 + ε √ γ t } Orthogonal polynomials w.r.t. the kernel are shifted Hermite polynomials. The ensemble P ε N is determinantal with kernel: √ γ N ( t , s ) = exp { ω ′ 2 ε 2 ω ′ := 4 N } K N ( t − ω ′ ε 2 N , s − ω ′ ε K ∗ 2 N ) , α + γ where K N is the kernel of rescaled GUE ω . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 12 / 25

  42. Universality ρ ε, k k -th correlation function of P ε N : N , F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  43. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  44. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , for all ε ∈ R : F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  45. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , ρ 1 ,ε for all ε ∈ R : = ⇒ σ and N F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  46. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , ρ 1 ,ε for all ε ∈ R : = ⇒ σ and N � � � sin ( π ( t i − t j ) � 1 t 1 t k σ ( a ) k ρ ε, k lim a + N σ ( a ) , . . . , a + = det , N N σ ( a ) π ( t i − t j ) N →∞ 1 ≤ i , j ≤ k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  47. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , ρ 1 ,ε for all ε ∈ R : = ⇒ σ and N � � � sin ( π ( t i − t j ) � 1 t 1 t k σ ( a ) k ρ ε, k lim a + N σ ( a ) , . . . , a + = det , N N σ ( a ) π ( t i − t j ) N →∞ 1 ≤ i , j ≤ k locally uniformly in t 1 , . . . t k , and a in compact subsets of ( − ω, ω ) . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  48. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , ρ 1 ,ε for all ε ∈ R : = ⇒ σ and N � � � sin ( π ( t i − t j ) � 1 t 1 t k σ ( a ) k ρ ε, k lim a + N σ ( a ) , . . . , a + = det , N N σ ( a ) π ( t i − t j ) N →∞ 1 ≤ i , j ≤ k locally uniformly in t 1 , . . . t k , and a in compact subsets of ( − ω, ω ) . Thm (Venker ’11) ρ k ,γ N ,α , k th correlation function of P γ N ,α : F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  49. Universality ρ ε, k k -th correlation function of P ε N : N , ω := ( α + γ ) − 1 / 2 , σ Wigner density on [ − ω, ω ] , ρ 1 ,ε for all ε ∈ R : = ⇒ σ and N � � � sin ( π ( t i − t j ) � 1 t 1 t k σ ( a ) k ρ ε, k lim a + N σ ( a ) , . . . , a + = det , N N σ ( a ) π ( t i − t j ) N →∞ 1 ≤ i , j ≤ k locally uniformly in t 1 , . . . t k , and a in compact subsets of ( − ω, ω ) . Thm (Venker ’11) ρ k ,γ N ,α , k th correlation function of P γ N ,α : � � � � 1 t 1 t k σ ( a ) k ρ γ, k sin ( π ( t i − t j ) lim a + N σ ( a ) , . . . , a + = det N ,α π ( t i − t j ) N σ ( a ) N →∞ 1 ≤ i , j ≤ k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 13 / 25

  50. Sketch of Proof: Recentering Hoeffding type decomposition of interaction � i < j h ( x i − x j ) = � h ( x i − x j ) + N � � i < j ˜ h ( x i − s ) d µ h Q ( s ) + const . i F. Götze (Bielefeld) Local/Global Universality October 9, 2012 14 / 25

  51. Sketch of Proof: Recentering Hoeffding type decomposition of interaction � i < j h ( x i − x j ) = � h ( x i − x j ) + N � � i < j ˜ h ( x i − s ) d µ h Q ( s ) + const . i into centered fluctuation (w.r.t to µ h Q ) and additional potential h ∗ µ h Q F. Götze (Bielefeld) Local/Global Universality October 9, 2012 14 / 25

  52. Sketch of Proof: Recentering Hoeffding type decomposition of interaction � i < j h ( x i − x j ) = � h ( x i − x j ) + N � � i < j ˜ h ( x i − s ) d µ h Q ( s ) + const . i into centered fluctuation (w.r.t to µ h Q ) and additional potential h ∗ µ h Q Ensemble P h N , Q : N � � 1 ∆( x ) 2 exp {− N P h N , Q ( x ) := Q ( x j ) } exp {− h ( x k − x j ) } Z h N , Q j = 1 j < k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 14 / 25

  53. Sketch of Proof: Recentering Hoeffding type decomposition of interaction � i < j h ( x i − x j ) = � h ( x i − x j ) + N � � i < j ˜ h ( x i − s ) d µ h Q ( s ) + const . i into centered fluctuation (w.r.t to µ h Q ) and additional potential h ∗ µ h Q Ensemble P h N , Q : N � � 1 ∆( x ) 2 exp {− N P h N , Q ( x ) := Q ( x j ) } exp {− h ( x k − x j ) } Z h N , Q j = 1 j < k N � � 1 ∆( x ) 2 exp {− N ˜ = V ( x j ) } exp {− h ( x k − x j ) } , ¯ Z h N , Q j = 1 j < k F. Götze (Bielefeld) Local/Global Universality October 9, 2012 14 / 25

  54. Sketch of Proof: Recentering Hoeffding type decomposition of interaction � i < j h ( x i − x j ) = � h ( x i − x j ) + N � � i < j ˜ h ( x i − s ) d µ h Q ( s ) + const . i into centered fluctuation (w.r.t to µ h Q ) and additional potential h ∗ µ h Q Ensemble P h N , Q : N � � 1 ∆( x ) 2 exp {− N P h N , Q ( x ) := Q ( x j ) } exp {− h ( x k − x j ) } Z h N , Q j = 1 j < k N � � 1 ∆( x ) 2 exp {− N ˜ = V ( x j ) } exp {− h ( x k − x j ) } , ¯ Z h N , Q j = 1 j < k � h ( t − s ) d µ h V ( t ) := Q ( t ) + Q ( s ) Correlation-Fct. of P h Claim: N , Q equivalent to P N , V as N → ∞ , where N � 1 ∆( x ) 2 exp {− N P N , V ( x ) := V ( x j ) } Z N , V j = 1 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 14 / 25

  55. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  56. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  57. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . Equilibrium measure for potential V (like V ν, Q above) is the unique solution, say µ = T ( V ) , F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  58. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . Equilibrium measure for potential V (like V ν, Q above) is the unique solution, say µ = T ( V ) , to the minimization problem � � � log | t − s | − 1 d µ ( t ) d µ ( s ) . min V ( t ) d µ ( t ) + µ ∈M 1 ( R ) F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  59. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . Equilibrium measure for potential V (like V ν, Q above) is the unique solution, say µ = T ( V ) , to the minimization problem � � � log | t − s | − 1 d µ ( t ) d µ ( s ) . min V ( t ) d µ ( t ) + µ ∈M 1 ( R ) By Schauder let µ = µ h Q be a fixed point of ν → T ( V ν, Q ) , i.e. F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  60. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . Equilibrium measure for potential V (like V ν, Q above) is the unique solution, say µ = T ( V ) , to the minimization problem � � � log | t − s | − 1 d µ ( t ) d µ ( s ) . min V ( t ) d µ ( t ) + µ ∈M 1 ( R ) By Schauder let µ = µ h Q be a fixed point of ν → T ( V ν, Q ) , i.e. Selfconsistency: µ = T ( V µ, Q ) , F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  61. Equilibrium Measure For ν ∈ M 1 ( R ) ( Q , h as above) consider potential � V ν, Q ( t ) := Q ( t ) + h ( t − s ) d ν ( s ) . Equilibrium measure for potential V (like V ν, Q above) is the unique solution, say µ = T ( V ) , to the minimization problem � � � log | t − s | − 1 d µ ( t ) d µ ( s ) . min V ( t ) d µ ( t ) + µ ∈M 1 ( R ) By Schauder let µ = µ h Q be a fixed point of ν → T ( V ν, Q ) , i.e. Selfconsistency: µ = T ( V µ, Q ) , with continuous density µ h Q ( x ) and compact support. F. Götze (Bielefeld) Local/Global Universality October 9, 2012 15 / 25

  62. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  63. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � j sin ( t x j ) . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  64. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � If g ( t ) = − � j sin ( t x j ) . h ≥ 0 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  65. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � If g ( t ) = − � j sin ( t x j ) . h ≥ 0 � ∞ � ∞ � 1 � g ( t ) S ( t ) 2 dt g 1 / 2 ( t ) S ( t ) dB t } exp = E exp { 2 0 0 � =: E ω exp { f ( x j , ω ) } , j F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  66. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � If g ( t ) = − � j sin ( t x j ) . h ≥ 0 � ∞ � ∞ � 1 � g ( t ) S ( t ) 2 dt g 1 / 2 ( t ) S ( t ) dB t } exp = E exp { 2 0 0 � =: E ω exp { f ( x j , ω ) } , j − � l � = k ˜ and one may linearize h ( x l − x k ) . F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  67. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � If g ( t ) = − � j sin ( t x j ) . h ≥ 0 � ∞ � ∞ � 1 � g ( t ) S ( t ) 2 dt g 1 / 2 ( t ) S ( t ) dB t } exp = E exp { 2 0 0 � =: E ω exp { f ( x j , ω ) } , j − � l � = k ˜ and one may linearize h ( x l − x k ) . g ( t ) = − � Need real f : extend limit results to h ( t ) < 0: F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

  68. Fourier Representation of ˜ h � µ = µ h Fourier representation, h real, Q , � � � � � 2 � � e i x j t − � e i x j · � µ ˜ � − h ( x l − x k ) = − h ( t ) dt , � � l � = k j Let e.g. S ( t ) = � If g ( t ) = − � j sin ( t x j ) . h ≥ 0 � ∞ � ∞ � 1 � g ( t ) S ( t ) 2 dt g 1 / 2 ( t ) S ( t ) dB t } exp = E exp { 2 0 0 � =: E ω exp { f ( x j , ω ) } , j − � l � = k ˜ and one may linearize h ( x l − x k ) . g ( t ) = − � Need real f : extend limit results to h ( t ) < 0: to family: g z := g + + zg − ≥ 0 , z ≥ 0 F. Götze (Bielefeld) Local/Global Universality October 9, 2012 16 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend