local geodesics for plurisubharmonic functions
play

Local geodesics for plurisubharmonic functions Alexander Rashkovskii - PowerPoint PPT Presentation

Local geodesics for plurisubharmonic functions Alexander Rashkovskii University of Stavanger, Norway Alexander Rashkovskii (UiS) Local geodesics 1 / 28 Motivations 1. General goal: good transformations u 0 u 1 of psh functions 2.


  1. Local geodesics for plurisubharmonic functions Alexander Rashkovskii University of Stavanger, Norway Alexander Rashkovskii (UiS) Local geodesics 1 / 28

  2. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  3. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  4. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  5. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  6. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  7. Motivations 1. General goal: ’good’ transformations u 0 �→ u 1 of psh functions 2. Global setting: metrics on K¨ ahler manifolds ( X , ω ) ω > 0 K¨ ahler form ahler form ω ′ = ω + dd c ϕ ∈ [ ω ], so ω ′ ↔ ϕ : metrics another K¨ Geodesics on the space of metrics : ϕ t that minimize energy functional � 1 � t ( ω + dd c ϕ t ) n dt ϕ 2 ˙ 0 X (Mabuchi 1987, Semmes 1992, Donaldson 1997, Chen 2000...) Characterization: ϕ t is a geodesic ⇔ ( ω + dd c Φ) n +1 = 0 on X × S ( n = dim X , Φ( z , ζ ) = ϕ log | ζ | ( z ), and S is an annulus in C ) Moreover, geodesics ϕ t linearize Mabuchi functional t �→ M ( ϕ t ). A curve ψ t is subgeodesic if the corresponding function Ψ satisfies ( ω + dd c Φ) n +1 ≥ 0. Mabuchi functional is convex on subgeodesics. Alexander Rashkovskii (UiS) Local geodesics 2 / 28

  8. Motivations: cont’d 3. Further developments: other functionals, singular metrics, ... ( Berman, Berndtsson, Darvas, Guedj, Phong, Tian, Ross, Wytt Nystr¨ om...) 4. Our aim: local counterpart of the theory for functions on open sets. Especially: applications? Alexander Rashkovskii (UiS) Local geodesics 3 / 28

  9. Motivations: cont’d 3. Further developments: other functionals, singular metrics, ... ( Berman, Berndtsson, Darvas, Guedj, Phong, Tian, Ross, Wytt Nystr¨ om...) 4. Our aim: local counterpart of the theory for functions on open sets. Especially: applications? Alexander Rashkovskii (UiS) Local geodesics 3 / 28

  10. PSH PSH( M ): functions u : M → [ −∞ , ∞ ) plurisubharmonic on a complex manifold M , i.e.: (i) upper semicontinuous on M (ii) u ◦ φ subharmonic in the unit disk D for every holomorphic mapping φ : D → M . Basic examples: 1. u = c log | f | for any c > 0 and any holomorphic mapping f : M → C n ; 2. u = ψ (log | z 1 | , . . . , log | z n | ) for a convex function ψ in S ⊂ R n . Basic properties: 1. u k ∈ PSH( M ) , 1 ≤ k ≤ N ⇒ u = max k u k ∈ PSH( M ); 2. u k ∈ PSH( M ) , u k ց u ⇒ u ∈ PSH( M ); 3. u α ∈ PSH( M ) , u α < C ∀ α ⇒ u = sup ∗ α u α ∈ PSH( M ). Alexander Rashkovskii (UiS) Local geodesics 4 / 28

  11. Energy functional on Cegrell classes M = D ⊂ C n : bounded hyperconvex domain. Cegrell’s class E 0 ( D ): bounded plurisubharmonic functions u in D , � D ( dd c u ) n < ∞ . u | ∂ D = 0 with finite total Monge-Amp` ere mass Energy functional on E 0 : � u ( dd c u ) n . E ( u ) = D Identity: � n � ( dd c u ) k ∧ ( dd c v ) n − k . E ( u ) − E ( v ) = ( u − v ) D k =0 Corollary: If u , v ∈ E 0 satisfy u ≤ v , then E ( u ) ≤ E ( v ). If, in addition, E ( u ) = E ( v ), then u = v on D . Alexander Rashkovskii (UiS) Local geodesics 5 / 28

  12. Energy functional on Cegrell classes M = D ⊂ C n : bounded hyperconvex domain. Cegrell’s class E 0 ( D ): bounded plurisubharmonic functions u in D , � D ( dd c u ) n < ∞ . u | ∂ D = 0 with finite total Monge-Amp` ere mass Energy functional on E 0 : � u ( dd c u ) n . E ( u ) = D Identity: � n � ( dd c u ) k ∧ ( dd c v ) n − k . E ( u ) − E ( v ) = ( u − v ) D k =0 Corollary: If u , v ∈ E 0 satisfy u ≤ v , then E ( u ) ≤ E ( v ). If, in addition, E ( u ) = E ( v ), then u = v on D . Alexander Rashkovskii (UiS) Local geodesics 5 / 28

  13. Energy functional on Cegrell classes M = D ⊂ C n : bounded hyperconvex domain. Cegrell’s class E 0 ( D ): bounded plurisubharmonic functions u in D , � D ( dd c u ) n < ∞ . u | ∂ D = 0 with finite total Monge-Amp` ere mass Energy functional on E 0 : � u ( dd c u ) n . E ( u ) = D Identity: � n � ( dd c u ) k ∧ ( dd c v ) n − k . E ( u ) − E ( v ) = ( u − v ) D k =0 Corollary: If u , v ∈ E 0 satisfy u ≤ v , then E ( u ) ≤ E ( v ). If, in addition, E ( u ) = E ( v ), then u = v on D . Alexander Rashkovskii (UiS) Local geodesics 5 / 28

  14. Energy functional on Cegrell classes M = D ⊂ C n : bounded hyperconvex domain. Cegrell’s class E 0 ( D ): bounded plurisubharmonic functions u in D , � D ( dd c u ) n < ∞ . u | ∂ D = 0 with finite total Monge-Amp` ere mass Energy functional on E 0 : � u ( dd c u ) n . E ( u ) = D Identity: � n � ( dd c u ) k ∧ ( dd c v ) n − k . E ( u ) − E ( v ) = ( u − v ) D k =0 Corollary: If u , v ∈ E 0 satisfy u ≤ v , then E ( u ) ≤ E ( v ). If, in addition, E ( u ) = E ( v ), then u = v on D . Alexander Rashkovskii (UiS) Local geodesics 5 / 28

  15. Geodesics for E 0 S = { 0 < log | ζ | < 1 } ⊂ C , S j = { log | ζ | = j } , log | S | = (0 , 1) Given u 0 , u 1 ∈ E 0 ( D ), denote W ( u 0 , u 1 ) = { u ∈ PSH − ( D × S ) : lim sup u ( · , ζ ) ≤ u j ( · ) , j = 0 , 1 } . ζ → S j Definition. v t is a subgeodesic for u 0 , u 1 if v log | ζ | ∈ W ( u 0 , u 1 ). u ( u , e t ), where The largest subgeodesic, u t , is called geodesic : u t ( z ) = � u = sup { u ∈ W ( u 1 , u 2 ) } ∈ PSH − ( D × S ). � Alexander Rashkovskii (UiS) Local geodesics 6 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend