linear quadratic optimization for periodic hybrid systems
play

Linear Quadratic Optimization for Periodic Hybrid Systems Corrado - PowerPoint PPT Presentation

Introduction FiniteHorizon InfiniteHorizon Stabilization Conclusions Linear Quadratic Optimization for Periodic Hybrid Systems Corrado Possieri Dipartimento di Ingegneria Civile e Ingegneria Informatica, Universit` a di Roma Tor


  1. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Linear Quadratic Optimization for Periodic Hybrid Systems Corrado Possieri Dipartimento di Ingegneria Civile e Ingegneria Informatica, Universit` a di Roma Tor Vergata, Roma, Italy Hybrid Dynamical Systems: Optimization, Stability and Applications Trento, 11 January 2017 C. Possieri LQ Optimal Control for a Class of Hybrid Systems 1 / 32

  2. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Outline Introduction 1 Finite–Horizon LQ Optimal Control 2 Infinite–Horizon LQ Optimal Control 3 Stabilization 4 Conclusions 5 C. Possieri LQ Optimal Control for a Class of Hybrid Systems 2 / 32

  3. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Linear Hybrid Systems with Periodic Jumps Consider the hybrid system governed by the flow dynamics τ ˙ = 1 , x ˙ = Ax + Bu F , whenever ( τ, x ) ∈ [0 , τ M ] × R n , by the jump dynamics τ + = 0 , x + = Ex + Fu J , whenever ( τ, x ) ∈ { τ M } × R n , and τ (0 , 0) = 0 , x (0 , 0) = x 0 . C. Possieri LQ Optimal Control for a Class of Hybrid Systems 3 / 32

  4. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Hybrid time domain Each solution is defined on the hybrid time domain T := { ( t, k ) , t ∈ [ kτ M , ( k + 1) τ M ] , k ∈ N } . k 5 4 3 2 1 t 0 τ M 0 2 τ M 3 τ M 4 τ M 5 τ M 6 τ M C. Possieri LQ Optimal Control for a Class of Hybrid Systems 4 / 32

  5. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Stabilizability of Periodic Linear Hybrid Systems The tuple ( A, B, E, F, τ M ) is stabilizable , i.e. , for any initial condition x 0 ∈ R n , there exist inputs u F ( · , · ) and u J ( · ) such that t + k →∞ x ( t, k ) = 0 , lim if and only if 1 rank[ Ee Aτ M − sI F R A,B ] = n, ∀ s / ∈ C g , A n − 1 B ] . where R A,B = [ B AB · · · 1 Possieri and Teel. Structural Properties of a Class of Linear Hybrid Systems and Output Feedback Stabilization . IEEE TAC, 2017 C. Possieri LQ Optimal Control for a Class of Hybrid Systems 5 / 32

  6. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Detectability of Periodic Linear Hybrid Systems The tuple ( A, E, C F , C J , τ M ) is detectable , i.e. , letting y F ( t, k ) := C F x ( t, k ) , y J ( k ) := C J x ( t k , k − 1) , for any initial state x 0 ∈ R n such that y F = y J = 0 , one has that t + k →∞ x ( t, k ) = 0 , lim with u F = 0 and u J = 0 , if and only if rank[ ( Ee Aτ M ) ′ − sI A,C F ] ′ = n, ( C J e Aτ M ) ′ O ′ ∀ s / ∈ C b , ( C F A n − 1 ) ′ ] ′ . where O A,C F := [ C ′ ( C F A ) ′ · · · F C. Possieri LQ Optimal Control for a Class of Hybrid Systems 6 / 32

  7. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Finite–Horizon Linear Quadratic Optimal Control Consider the quadratic cost functional � T J = ( | x ( t, k ) | Q F + | u F ( t, k ) | R F ) dt + 0 K � + ( | x ( t k , k − 1) | Q J + | u J ( k ) | R J ) + | x ( T, K ) | S . k =1 Problem ′ ] ′ that minimizes the functional J Find, if any, u ⋆ = [ u ⋆ ′ u ⋆ F J from the initial condition (0 , x 0 ) , x 0 ∈ R n . C. Possieri LQ Optimal Control for a Class of Hybrid Systems 7 / 32

  8. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Cost–to–go function For each ( θ, κ ) ∈ T , 0 � θ � T , x ∈ R n , �� T V ( θ, κ, x ) := inf ( | x ( t, k ) | Q F + | u F ( t, k ) | R F ) dt + u ( · , · ) θ K � � + ( | x ( t k , k − 1) | Q J + | u J ( k ) | R J ) + | x ( T, K ) | S . k = κ +1 The objective is to compute V (0 , 0 , x 0 ) . C. Possieri LQ Optimal Control for a Class of Hybrid Systems 8 / 32

  9. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Backward Propagation Through Flow (1/2) For all t ∈ [ Kτ M , T ] , �� T � V ( t, K, x ) = inf ( | x | Q F + | u | R F ) + | x ( T, K ) | S . u ( · ,K ) t k V ( T, K, x ) = | x | S K t Kτ M T C. Possieri LQ Optimal Control for a Class of Hybrid Systems 9 / 32

  10. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Backward Propagation Through Flow (2/2) Terminal cost: V ( T, K, x ) = | x | S . Backward Propagation: for all t ∈ [ t K , T ] , V ( t, K, x ) = | x | P ( t,K ) , where − ˙ A ′ P + PA + Q F − PBR − 1 F B ′ P, P = P ( T, K ) = S. Optimal control: for all t ∈ [ t K , T ] , u ⋆ F ( t, K ) = − R − 1 F B ′ P ( t, K ) x, C. Possieri LQ Optimal Control for a Class of Hybrid Systems 10 / 32

  11. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Backward Propagation Through Jump At hybrid time ( Kτ M , K − 1) , V ( t K , K − 1 , x ) = inf u {| x | Q J + | u | R J + | Ex + Fu | ¯ S } . k V ( Kτ M , K, x ) = | x | ¯ S K K − 1 t Kτ M C. Possieri LQ Optimal Control for a Class of Hybrid Systems 11 / 32

  12. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Backward Propagation Through Jump Terminal cost: V ( T, K, x ) = | x | ¯ S , where ¯ S = S , if K = T/τ M , or ¯ S = P ( t K , K ) , if K � = T/τ M . Backward Propagation: V ( t K , K − 1 , x ) = | x | P ( t K ,K − 1) , where P ( t K , K − 1) = Q J + E ′ ¯ SE − E ′ ¯ SF ( R J + F ′ ¯ SF ) − 1 F ′ ¯ SE. Optimal control: J ( K ) = − ( R J + F ′ ¯ SF ) − 1 F ′ ¯ u ⋆ SEx. C. Possieri LQ Optimal Control for a Class of Hybrid Systems 12 / 32

  13. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Solution to the Finite–Horizon LQ Optimal Control There exists a unique solution to the problem, given by − R − 1 F B ′ P ( t, k ) x, u ⋆ F ( t, k ) = u ⋆ − ( R J + F ′ P ( t k , k ) F ) − 1 F ′ P ( t k , k ) Ex, J ( k ) = where P ( t, k ) is the solution to the HRE with flow dynamics − ˙ τ = 1 , − ˙ A ′ P + PA + Q F − PBR − 1 F B ′ P, P = if ( τ, P ) ∈ [0 , τ M ] × R n × n , and jumps dynamics τ + = 0 , Q J + E ′ P + E − E ′ P + F ( R J + F ′ P + F ) − 1 F ′ P + E, P = if ( τ, P ) ∈ { 0 } × R n × n , with τ ( T, K ) = T − Kτ M , P ( T, K ) = S . C. Possieri LQ Optimal Control for a Class of Hybrid Systems 13 / 32

  14. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Time scales Let T be a compact time scale , i.e. , a compact subset of R . Let ς ( t ) := inf { s ∈ T : s > t } and µ ( t ) = ς ( t ) − t . Letting f : T → R , define f ( ς ( t )) − f ( s ) f ∆ ( t ) := lim ς ( t ) − s s → t,s ∈ T \{ ς ( t ) } � ˙ f ( t ) , if ς ( t ) � t, = f ( ς ( t )) − f ( t ) , if ς ( t ) > t. ς ( t ) − t C. Possieri LQ Optimal Control for a Class of Hybrid Systems 14 / 32

  15. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Linear Quadratic optimal control on time scales Consider the system x ∆ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) , and the cost functional � b J = ( | x ( t ) | Q ( t ) + | u ( t ) | R ( t ) )∆ t + | x ( b ) | S . a A minimizer for J is given by u = K − 1 Mx where 2 W ∆ − Q + W ς A + A ⊤ W ς + µA ⊤ W ς A + M ⊤ K − 1 M = 0 . with W ( b ) = − S , W ς = W + µW ∆ , and R − µB ⊤ W ς B, K := B ⊤ W ς ( I + µA ) . M := 2 Hilscher and Zeidan. Hamilton–Jacobi theory over time scales and applications to linear–quadratic problems . Nonlinear Analysis, 2012 C. Possieri LQ Optimal Control for a Class of Hybrid Systems 15 / 32

  16. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Relation of the hybrid LQR with the LQR on time scales Consider the time scale T = � k ∈ N [ k + kτ M , k + ( k + 1) τ M ] . τ M + 1 2 τ M + 1 3 τ M + 3 4 τ M + 4 τ M 0 2 τ M + 2 3 τ M + 2 t Define the system x ∆ ( t ) = Φ( t, x ( t )) on T where � Ax + Bu F , if ς ( t ) � t, Φ( t, x ) := Ex + Fu J , if ς ( t ) > t, The HRE translates the results for dynamical systems over time scales to the considered hybrid setting. C. Possieri LQ Optimal Control for a Class of Hybrid Systems 16 / 32

  17. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Infinite–Horizon Linear Quadratic Optimal Control Consider the cost function � ∞ J ∞ = ( | x ( t, k ) | Q F + | u F ( t, k ) | R F ) dt + 0 ∞ � + ( | x ( t k , k − 1) | Q J + | u J ( k ) | R J ) , k =1 Problem J, ∞ ) ′ ] ′ that ∞ = [ ( u ⋆ F, ∞ ) ′ ( u ⋆ Find, if any, a control input u ⋆ minimizes the cost J ∞ from the initial condition (0 , x 0 ) , x 0 ∈ R n . C. Possieri LQ Optimal Control for a Class of Hybrid Systems 17 / 32

  18. Introduction Finite–Horizon Infinite–Horizon Stabilization Conclusions Limit of the solution to the Hybrid Riccati Equation Assume that the tuple ( A, B, E, F, τ M ) is stabilizable . P T ( t, k ) is the solution to the HRE with P T ( T, K ) = 0 . There exists P ∞ ( σ ) = lim T →∞ P T ( σ, 0) . P ∞ ( σ ) satisfies d dσP ∞ ( σ ) = − A ′ P ∞ ( σ ) − P ∞ ( σ ) A − Q F + P ∞ ( σ ) BR − 1 F B ′ P ∞ ( σ ) , for all σ ∈ [0 , τ M ] , and P ∞ ( τ M ) = Q J + E ′ P ∞ (0) E − E ′ P ∞ (0) F ( R J + F ′ P ∞ (0) F ) − 1 F ′ P ∞ (0) E. C. Possieri LQ Optimal Control for a Class of Hybrid Systems 18 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend