linear program duality
play

Linear Program Duality Frdric Giroire FG Duality 1/24 Motivation - PowerPoint PPT Presentation

Linear Program Duality Frdric Giroire FG Duality 1/24 Motivation Finding bounds on the optimal solution. Provides a measure of the "goodness" of a solution. Provide certificate of optimality. Economic interpretation


  1. Linear Program Duality Frédéric Giroire FG Duality 1/24

  2. Motivation • Finding bounds on the optimal solution. Provides a measure of the "goodness" of a solution. • Provide certificate of optimality. • Economic interpretation of the dual problem. FG Duality 2/24

  3. ** Introduction to Duality ** FG Duality 3/24

  4. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : − − + ≤ x 1 x 2 x 3 3 x 4 1 + + + ≤ 5 x 1 x 2 3 x 3 8 x 4 55 − x 1 + + − ≤ 2 x 2 3 x 3 5 x 4 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Lower bound: a feasible solution, e.g. ( 0 , 0 , 1 , 0 ) ⇒ z ∗ ≥ 5. What if we want an upper bound? FG Duality 4/24

  5. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : x 1 − x 2 − x 3 + 3 x 4 ≤ 1 5 x 1 + x 2 + 3 x 3 + 8 x 4 ≤ 55 − x 1 + 2 x 2 + 3 x 3 − 5 x 4 ≤ 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Second Inequation × 5 / 3: 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 ≤ 275 3 . Note that (all variables are positive), 4 x 1 + x 2 + 5 x 3 + 3 x 4 ≤ 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 Hence, a first bound: z ∗ ≤ 275 3 . FG Duality 5/24

  6. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : x 1 − x 2 − x 3 + 3 x 4 ≤ 1 5 x 1 + x 2 + 3 x 3 + 8 x 4 ≤ 55 − x 1 + 2 x 2 + 3 x 3 − 5 x 4 ≤ 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Second Inequation × 5 / 3: 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 ≤ 275 3 . Note that (all variables are positive), 4 x 1 + x 2 + 5 x 3 + 3 x 4 ≤ 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 Hence, a first bound: z ∗ ≤ 275 3 . FG Duality 5/24

  7. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : x 1 − x 2 − x 3 + 3 x 4 ≤ 1 5 x 1 + x 2 + 3 x 3 + 8 x 4 ≤ 55 − x 1 + 2 x 2 + 3 x 3 − 5 x 4 ≤ 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Second Inequation × 5 / 3: 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 ≤ 275 3 . Note that (all variables are positive), 4 x 1 + x 2 + 5 x 3 + 3 x 4 ≤ 25 3 x 1 + 5 3 x 2 + 5 x 3 + 40 3 x 4 Hence, a first bound: z ∗ ≤ 275 3 . FG Duality 5/24

  8. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : − − + ≤ x 1 x 2 x 3 3 x 4 1 + + + ≤ 5 x 1 x 2 3 x 3 8 x 4 55 − x 1 + + − ≤ 2 x 2 3 x 3 5 x 4 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Similarly, 2 d + 3 d constraints: 4 x 1 + 3 x 2 + 6 x 3 + 3 x 4 ≤ 58 . Hence, a second bound: z ∗ ≤ 58 . → need for a systematic strategy. FG Duality 6/24

  9. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : − − + ≤ x 1 x 2 x 3 3 x 4 1 + + + ≤ 5 x 1 x 2 3 x 3 8 x 4 55 − x 1 + + − ≤ 2 x 2 3 x 3 5 x 4 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Similarly, 2 d + 3 d constraints: 4 x 1 + 3 x 2 + 6 x 3 + 3 x 4 ≤ 58 . Hence, a second bound: z ∗ ≤ 58 . → need for a systematic strategy. FG Duality 6/24

  10. Duality Theorem: introduction + + + Maximize 4 x 1 x 2 5 x 3 3 x 4 Subject to : x 1 − x 2 − x 3 + 3 x 4 ≤ 1 × y 1 + + + ≤ × y 2 5 x 1 x 2 3 x 3 8 x 4 55 − x 1 + 2 x 2 + 3 x 3 − 5 x 4 ≤ 3 × y 3 x 1 , x 2 , x 3 , x 4 ≥ 0 . Build linear combinations of the constraints. Summing: ( y 1 + 5 y 2 − y 3 ) x 1 +( − y 1 + y 2 + 2 y 3 ) x 2 +( − y 1 + 3 y 2 + 3 y 3 ) x 3 +( 3 y 1 + 8 y 2 − 5 y 3 ) x 4 ≤ y 1 + 55 y 2 + 3 y 3 . We want left part upper bound of z . We need coefficient of x j ≥ coefficient in z : + − ≥ y 1 5 y 2 y 3 4 − y 1 + + ≥ y 2 2 y 3 1 − y 1 + + ≥ 3 y 2 3 y 3 5 + − ≥ 3 . 3 y 1 8 y 2 5 y 3 FG Duality 7/24

  11. Duality Theorem: introduction Build linear combinations of the constraints. Summing: ( y 1 + 5 y 2 − y 3 ) x 1 +( − y 1 + y 2 + 2 y 3 ) x 2 +( − y 1 + 3 y 2 + 3 y 3 ) x 3 +( 3 y 1 + 8 y 2 − 5 y 3 ) x 4 ≤ y 1 + 55 y 2 + 3 y 3 . We want left part upper bound of z . We need coefficient of x j ≥ coefficient in z : + − ≥ y 1 5 y 2 y 3 4 − y 1 + y 2 + 2 y 3 ≥ 1 − y 1 + + ≥ 3 y 2 3 y 3 5 + − ≥ 3 . 3 y 1 8 y 2 5 y 3 If the y i ≥ 0 and satisfy theses inequations, then 4 x 1 + x 2 + 5 x 3 + 3 x 4 ≤ y 1 + 55 y 2 + 3 y 3 . In particular, z ∗ ≤ y 1 + 55 y 2 + 3 y 3 . FG Duality 7/24

  12. Duality Theorem: introduction Objective: smallest possible upper bound. Hence, we solve the following PL: + + Minimize y 1 55 y 2 3 y 3 Subject to: y 1 + 5 y 2 − y 3 ≥ 4 − y 1 + + ≥ y 2 2 y 3 1 (1) − y 1 + + ≥ 3 y 2 3 y 3 5 + − ≥ 3 y 1 8 y 2 5 y 3 3 y 1 , y 2 , y 3 ≥ 0 . It is the dual problem of the problem. FG Duality 8/24

  13. ** Duality ** FG Duality 9/24

  14. The Dual Problem Primal problem: ∑ n Maximize j = 1 c j x j ∑ n ≤ ( i = 1 , 2 , ··· , m ) Subject to: j = 1 a ij x j b i (2) x j ≥ 0 ( j = 1 , 2 , ··· , n ) Its dual problem is defined by the LP problem: ∑ m Minimize i = 1 b i y i ∑ m ≥ ( j = 1 , 2 , ··· , n ) Subject to: i = 1 a ij y i c j (3) ≥ ( i = 1 , 2 , ··· , m ) y i 0 FG Duality 10/24

  15. Weak Duality Theorem Theorem: If ( x 1 , x 2 ,..., x n ) is feasible for the primal and ( y 1 , y 2 ,... y n ) is feasible for the dual, then c j x j ≤ ∑ ∑ b i y i . j i Proof: ≤ ∑ j ( ∑ i y i a ij ) x j dual definition: ∑ i y i a ij ≥ c j ∑ j c j x j = ∑ i ( ∑ j a ij x j ) y i ≤ ∑ i b i y i primal definition: ∑ i x i a ij ≤ b j FG Duality 11/24

  16. Gap or No Gap? An important question: Is there a gap between the largest primal value and the smallest dual value? FG Duality 12/24

  17. Strong Duality Theorem Theorem: If the primal problem has an optimal solution, x ∗ = ( x ∗ 1 ,..., X ∗ n ) , then the dual also has an optimal solution, y ∗ = ( y ∗ 1 ,..., y ∗ n ) , and j = ∑ c j x ∗ b i y ∗ ∑ i . j i FG Duality 13/24

  18. Relationship between the Primal and Dual Problems Lemma: The dual of the dual is always the primal problem. Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution. Weak duality: Primal unbounded ⇒ dual unfeasible. Dual Optimal Unfeasible Unbounded Optimal X Primal Unfeasible X X Unbounded X FG Duality 14/24

  19. Relationship between the Primal and Dual Problems Lemma: The dual of the dual is always the primal problem. Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution. Weak duality: Primal unbounded ⇒ dual unfeasible. Dual Optimal Unfeasible Unbounded Optimal X Primal Unfeasible X X Unbounded X FG Duality 14/24

  20. ** Certificate of Optimality ** FG Duality 15/24

  21. Complementary Slackness Theorem: Let x ∗ 1 ,... x ∗ n be a feasible solution of the primal and y ∗ 1 ,... y ∗ n be a feasible solution of the dual. Then, m a ij y ∗ x ∗ ∑ i = c j j = 0 or both ( j = 1 , 2 ,... n ) or i = 1 n a ij x ∗ y ∗ ∑ j = b i i = 0 or both ( i = 1 , 2 ,... m ) or j = 1 are necessary and sufficient conditions to have the optimality of x ∗ and y ∗ . FG Duality 16/24

  22. Complementary Slackness - Proof x ∗ feasible ⇒ b i − ∑ j a ij x j ≥ 0. y ∗ dual feasible, hence non negative. Thus ( b i − ∑ a ij x j ) y i ≥ 0 . j Similarly, y ∗ dual feasible ⇒ ∑ i a ij y i − c j ≥ 0. x ∗ feasible, hence non negative. ( ∑ a ij y i − c j ) x j ≥ 0 . i FG Duality 17/24

  23. Complementary Slackness - Proof ( b i − ∑ ( ∑ a ij x j ) y i ≥ 0 and a ij y i − c j ) x j ≥ 0 j i By summing, we get: ∑ ( b i − ∑ ∑ ( ∑ a ij x j ) y i ≥ 0 a ij y i − c j ) x j ≥ 0 and i j j i Summing + strong duality theorem: c j x j = ∑ ∑ b i y i − ∑ a ij x j y i + ∑ a ij y i x j − ∑ b i y i − ∑ c j x j = 0 . i i , j j , i j i Implies: inequalities must be equalities: ∀ i , ( b i − ∑ ∀ j ( ∑ a ij x j ) y i = 0 a ij y i − c j ) x j = 0 . and j i XY = 0 if X = 0 or Y = 0. Done. FG Duality 18/24

  24. Complementary Slackness - Proof ( b i − ∑ ( ∑ a ij x j ) y i ≥ 0 and a ij y i − c j ) x j ≥ 0 j i By summing, we get: ∑ ( b i − ∑ ∑ ( ∑ a ij x j ) y i ≥ 0 a ij y i − c j ) x j ≥ 0 and i j j i Summing + strong duality theorem: c j x j = ∑ ∑ b i y i − ∑ a ij x j y i + ∑ a ij y i x j − ∑ b i y i − ∑ c j x j = 0 . i i , j j , i j i Implies: inequalities must be equalities: ∀ i , ( b i − ∑ ∀ j ( ∑ a ij x j ) y i = 0 a ij y i − c j ) x j = 0 . and j i XY = 0 if X = 0 or Y = 0. Done. FG Duality 18/24

  25. Complementary Slackness - Proof ( b i − ∑ ( ∑ a ij x j ) y i ≥ 0 and a ij y i − c j ) x j ≥ 0 j i By summing, we get: ∑ ( b i − ∑ ∑ ( ∑ a ij x j ) y i ≥ 0 a ij y i − c j ) x j ≥ 0 and i j j i Summing + strong duality theorem: c j x j = ∑ ∑ b i y i − ∑ a ij x j y i + ∑ a ij y i x j − ∑ b i y i − ∑ c j x j = 0 . i i , j j , i j i Implies: inequalities must be equalities: ∀ i , ( b i − ∑ ∀ j ( ∑ a ij x j ) y i = 0 a ij y i − c j ) x j = 0 . and j i XY = 0 if X = 0 or Y = 0. Done. FG Duality 18/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend