operations research linear programming duality
play

Operations Research Linear Programming Duality Ling-Chieh Kung - PowerPoint PPT Presentation

Primal-dual pairs Duality theorems Shadow prices Operations Research Linear Programming Duality Ling-Chieh Kung Department of Information Management National Taiwan University Linear Programming Duality 1 / 42 Ling-Chieh Kung (NTU IM)


  1. Primal-dual pairs Duality theorems Shadow prices Operations Research Linear Programming Duality Ling-Chieh Kung Department of Information Management National Taiwan University Linear Programming Duality 1 / 42 Ling-Chieh Kung (NTU IM)

  2. Primal-dual pairs Duality theorems Shadow prices Introduction ◮ For business, we study how to formulate LPs. ◮ For engineering, we study how to solve LPs. ◮ For science, we study mathematical properties of LPs. ◮ We will study Linear Programming duality . ◮ It still has important applications. Linear Programming Duality 2 / 42 Ling-Chieh Kung (NTU IM)

  3. Primal-dual pairs Duality theorems Shadow prices Road map ◮ Primal-dual pairs . ◮ Duality theorems. ◮ Shadow prices. Linear Programming Duality 3 / 42 Ling-Chieh Kung (NTU IM)

  4. Primal-dual pairs Duality theorems Shadow prices Upper bounds of a maximization LP ◮ Consider the following LP z ∗ = max 4 x 1 + 5 x 2 + 8 x 3 s.t. x 1 + 2 x 2 + 3 x 3 ≤ 6 2 x 1 + x 2 + 2 x 3 ≤ 4 x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 . ◮ Suppose the LP is very hard to solve. ◮ Your friend proposes a solution ˆ x = ( 1 2 , 1 , 1) with ˆ z = 15. ◮ If we know z ∗ , we may compare ˆ z with z ∗ . ◮ How to evaluate the performance of ˆ x without solving the LP? ◮ If we can find an upper bound of z ∗ , that works! ◮ z ∗ cannot be greater than the upper bound. ◮ So if ˆ x is quite good. 1 z is close to the upper bound, ˆ 1 You know 97 is quite high without knowing the highest in this class. Linear Programming Duality 4 / 42 Ling-Chieh Kung (NTU IM)

  5. Primal-dual pairs Duality theorems Shadow prices Upper bounds of a maximization LP ◮ How to find an upper bound of z ∗ for z ∗ = max 4 x 1 + 5 x 2 + 8 x 3 s.t. x 1 + 2 x 2 + 3 x 3 ≤ 6 2 x 1 + x 2 + 2 x 3 ≤ 4 x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0? ◮ How about this: Multiply the first constraint by 2, multiply the second constraint by 1, and then add them together: 2( x 1 + 2 x 2 + 3 x 3 ) + (2 x 1 + x 2 + 2 x 3 ) ≤ 2 × 6 + 4 ⇔ 4 x 1 + 5 x 2 + 8 x 3 ≤ 16 . ◮ Compare this with the objective function, we know z ∗ ≤ 16. ◮ Maybe z ∗ is exactly 16 (and the upper bound is tight ). However, we do not know it here. z = 15 is close to z ∗ = 16, so ˆ ◮ ˆ x is quite good. Linear Programming Duality 5 / 42 Ling-Chieh Kung (NTU IM)

  6. Primal-dual pairs Duality theorems Shadow prices Upper bounds of a maximization LP ◮ How to find an upper bound of z ∗ for this one? z ∗ = max 3 x 1 + 4 x 2 + 8 x 3 s.t. x 1 + 2 x 2 + 3 x 3 ≤ 6 2 x 1 + x 2 + 2 x 3 ≤ 4 x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 . ◮ 16 is also an upper bound: 3 x 1 + 4 x 2 + 8 x 3 ≤ 4 x 1 + 5 x 2 + 8 x 3 (because x 1 ≥ 0 , x 2 ≥ 0) = 2( x 1 + 2 x 2 + 3 x 3 ) + (2 x 1 + x 2 + 2 x 3 ) ≤ 2 × 6 + 4 = 16 . ◮ It is quite likely that 16 is not a tight upper bound and there is a better one. How to improve our upper bound? Linear Programming Duality 6 / 42 Ling-Chieh Kung (NTU IM)

  7. Primal-dual pairs Duality theorems Shadow prices Better upper bounds? z ∗ = max 3 x 1 + 4 x 2 + 8 x 3 s.t. x 1 + 2 x 2 + 3 x 3 6 ≤ 2 x 1 + x 2 + 2 x 3 4 ≤ x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 . ◮ Changing coefficients multiplied on the two constraints modifies the proposed upper bound. ◮ Different coefficients result in different linear combinations . ◮ Let’s call the two coefficients y 1 and y 2 , respectively: x 1 + 2 x 2 + 3 x 3 ≤ 6 ( × y 1 ) 2 x 1 + x 2 + 2 x 3 ≤ 4 ( × y 2 ) ( y 1 + 2 y 2 ) x 1 + (2 y 1 + y 2 ) x 2 + (3 y 1 + 2 y 2 ) x 3 ≤ 6 y 1 + 4 y 2 ◮ We need y 1 ≥ 0 and y 2 ≥ 0 to preserve the “ ≤ ”. ◮ When do we have z ∗ ≤ 6 y 1 + 4 y 2 ? Linear Programming Duality 7 / 42 Ling-Chieh Kung (NTU IM)

  8. Primal-dual pairs Duality theorems Shadow prices Looking for the lowest upper bound ◮ So we look for two variables y 1 and y 2 such that: ◮ y 1 ≥ 0 and y 2 ≥ 0. ◮ 3 ≤ y 1 + 2 y 2 , 4 ≤ 2 y 1 + y 2 , and 8 ≤ 3 y 1 + 2 y 2 . ◮ Then z ∗ ≤ 6 y 1 + 4 y 2 . ◮ To try our best to look for an upper bound, we minimize 6 y 1 + 4 y 2 . We are solving another LP ! min 6 y 1 + 4 y 2 max 3 x 1 + 4 x 2 + 8 x 3 s.t. y 1 + 2 y 2 3 ≥ s.t. x 1 + 2 x 2 + 3 x 3 6 ≤ ⇒ 2 y 1 + y 2 4 ≥ 2 x 1 + x 2 + 2 x 3 ≤ 4 3 y 1 + 2 y 2 8 ≥ x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 . y 1 ≥ 0 , y 2 ≥ 0 . ◮ We call the original LP the primal LP and the new one its dual LP. ◮ This idea applies to any LP. Let’s see more examples. Linear Programming Duality 8 / 42 Ling-Chieh Kung (NTU IM)

  9. Primal-dual pairs Duality theorems Shadow prices Nonpositive or free variables ◮ Suppose variables are not all nonnegative: z ∗ = max 3 x 1 + 4 x 2 + 8 x 3 s.t. + 2 x 2 + 3 x 3 ≤ 6 x 1 2 x 1 + + 2 x 3 ≤ 4 x 2 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. ◮ If we want 3 x 1 + 4 x 2 + 8 x 3 ≤ ( y 1 + 2 y 2 ) x 1 + (2 y 1 + y 2 ) x 2 + (3 y 1 + 2 y 2 ) x 3 , now we need + 2 y 2 ≥ 3 because x 1 ≥ 0 , y 1 2 y 1 + ≤ 4 because x 2 ≤ 0 , and y 2 3 y 1 + 2 y 2 = 8 because x 3 is free. Linear Programming Duality 9 / 42 Ling-Chieh Kung (NTU IM)

  10. Primal-dual pairs Duality theorems Shadow prices Nonpositive or free variables ◮ So the primal and dual LPs are min 6 y 1 + 4 y 2 max 3 x 1 + 4 x 2 + 8 x 3 s.t. y 1 + 2 y 2 ≥ 3 s.t. x 1 + 2 x 2 + 3 x 3 6 ≤ and 2 y 1 + y 2 ≤ 4 2 x 1 + x 2 + 2 x 3 4 ≤ 3 y 1 + 2 y 2 = 8 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. y 1 ≥ 0 , y 2 ≥ 0 . ◮ Some observations: ◮ Primal max ⇒ Dual min. ◮ Primal objective ⇒ Dual RHS. ◮ Primal RHS ⇒ Dual objective. ◮ Moreover: ◮ Primal “ ≥ 0” variable ⇒ Dual “ ≥ ” constraint. ◮ Primal “ ≤ 0” variable ⇒ Dual “ ≤ ” constraint. ◮ Primal free variable ⇒ Dual “=” constraint. ◮ What if we have “ ≥ ” or “=” primal constraints? Linear Programming Duality 10 / 42 Ling-Chieh Kung (NTU IM)

  11. Primal-dual pairs Duality theorems Shadow prices No-less-than and equality constraints ◮ Suppose constraints are not all “ ≤ ”: z ∗ = max 3 x 1 + 4 x 2 + 8 x 3 s.t. x 1 + 2 x 2 + 3 x 3 ≥ 6 2 x 1 + x 2 + 2 x 3 = 4 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. ◮ To obtain y 1 ( x 1 + 2 x 2 + 3 x 3 ) + y 2 (2 x 1 + x 2 + 2 x 3 ) ≤ 6 y 1 + 4 y 2 , we now need y 1 ≤ 0. y 2 can be of any sign (i.e., free). Linear Programming Duality 11 / 42 Ling-Chieh Kung (NTU IM)

  12. Primal-dual pairs Duality theorems Shadow prices No-less-than and equality constraints ◮ So the primal and dual LPs are min 6 y 1 + 4 y 2 max 3 x 1 + 4 x 2 + 8 x 3 s.t. y 1 + 2 y 2 ≥ 3 s.t. x 1 + 2 x 2 + 3 x 3 6 ≥ and 2 y 1 + 4 y 2 ≤ 2 x 1 + x 2 + 2 x 3 = 4 3 y 1 + 2 y 2 = 8 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. y 1 ≤ 0 , y 2 urs. ◮ Some more observations: ◮ Primal “ ≤ ” constraint ⇒ Dual “ ≥ 0” variable. ◮ Primal “ ≥ ” constraint ⇒ Dual “ ≤ 0” variable. ◮ Primal “=” constraint ⇒ Dual free variable. Linear Programming Duality 12 / 42 Ling-Chieh Kung (NTU IM)

  13. Primal-dual pairs Duality theorems Shadow prices The general rule ◮ In general, if the primal LP is max c 1 x 1 + c 2 x 2 + c 3 x 3 s.t. A 11 x 1 + A 12 x 2 + A 13 x 3 ≥ b 1 A 21 x 1 + A 22 x 2 + A 23 x 3 ≤ b 2 A 31 x 1 + A 32 x 2 + A 33 x 3 = b 3 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. , its dual LP is min b 1 y 1 + b 2 y 2 + b 3 y 3 s.t. A 11 y 1 + A 21 y 2 + A 31 y 3 ≥ c 1 A 12 y 1 + A 22 y 2 + A 32 y 3 ≤ c 2 A 13 y 1 + A 23 y 2 + A 33 y 3 = c 3 y 1 ≤ 0 , y 2 ≥ 0 , y 3 urs. ◮ Note that the constraint coefficient matrix is “ transposed ”. Linear Programming Duality 13 / 42 Ling-Chieh Kung (NTU IM)

  14. Primal-dual pairs Duality theorems Shadow prices Matrix representation ◮ In general, if the primal LP ◮ In matrix representation: max c 1 x 1 + c 2 x 2 + c 3 x 3 c T x s.t. A 11 x 1 + A 12 x 2 + A 13 x 3 = b 1 max A 21 x 1 + A 22 x 2 + A 23 x 3 = b 2 s.t. Ax = b A 31 x 1 + A 32 x 2 + A 33 x 3 = b 3 x ≥ 0 x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 , and is in the standard form , its dual LP is y T b min min + + b 1 y 1 b 2 y 2 b 3 y 3 y T A ≥ c T . s.t. s.t. + + ≥ A 11 y 1 A 21 y 2 A 31 y 3 c 1 + + ≥ A 12 y 1 A 22 y 2 A 32 y 3 c 2 + + ≥ A 13 y 1 A 23 y 2 A 33 y 3 c 3 . Linear Programming Duality 14 / 42 Ling-Chieh Kung (NTU IM)

  15. Primal-dual pairs Duality theorems Shadow prices The dual LP for a minimization primal LP ◮ For a minimization LP, its dual LP is to maximize the lower bound . ◮ Rules for the directions of variables and constraints are reversed : max 6 y 1 + 4 y 2 min 3 x 1 + 4 x 2 + 8 x 3 s.t. y 1 + 2 y 2 3 ≤ s.t. x 1 + 2 x 2 + 3 x 3 6 ≥ ⇒ 2 y 1 + y 2 4 ≥ 2 x 1 + x 2 + 2 x 3 ≤ 4 3 y 1 + 2 y 2 = 8 x 1 ≥ 0 , x 2 ≤ 0 , x 3 urs. y 1 ≥ 0 , y 2 ≤ 0 . ◮ Note that 3 x 1 + 4 x 2 + 8 x 3 ≥ ( y 1 + 2 y 2 ) x 1 + (2 y 1 + y 2 ) x 2 + (3 y 1 + 2 y 2 ) x 3 ≥ ( x 1 + 2 x 2 + 3 x 3 ) y 1 + (2 x 1 + x 2 + 2 x 3 ) y 2 ≥ 6 y 1 + 4 y 2 . Linear Programming Duality 15 / 42 Ling-Chieh Kung (NTU IM)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend