leptogenesis and colliders
play

Leptogenesis and Colliders Bhupal Dev Washington University in St. - PowerPoint PPT Presentation

Leptogenesis and Colliders Bhupal Dev Washington University in St. Louis ACFI Workshop on Neutrinos at the High Energy Frontier UMass Amherst July 19, 2017 Matter-Antimatter Asymmetry B n B n 6 . 1 10 10 B n One


  1. Leptogenesis and Colliders Bhupal Dev Washington University in St. Louis ACFI Workshop on Neutrinos at the High Energy Frontier UMass Amherst July 19, 2017

  2. Matter-Antimatter Asymmetry η B ≡ n B − n ¯ ≃ 6 . 1 × 10 − 10 B n γ One number − → BSM Physics Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 2 / 45

  3. Leptogenesis [Fukugita, Yanagida ’86] A cosmological consequence of the seesaw mechanism. Provides a common link between neutrino mass and baryon asymmetry. Naturally satisfies all the Sakharov conditions. L violation due to the Majorana nature of heavy RH neutrinos. New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases). Departure from thermal equilibrium when Γ N � H . Freely available: / L → / B through EW sphaleron interactions. Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 3 / 45

  4. Popularity of Leptogenesis [INSPIRE Database] Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 4 / 45

  5. Popularity of Leptogenesis [INSPIRE Database] Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 5 / 45

  6. Leptogenesis for Pedestrians [Buchm¨ uller, Di Bari, Pl¨ umacher ’05] Three basic steps: Generation of L asymmetry by heavy Majorana neutrino decay: 1 Partial washout of the asymmetry due to inverse decay (and scatterings): 2 Conversion of the left-over L asymmetry to B asymmetry at T > T sph . 3 Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 6 / 45

  7. Boltzmann Equations [Buchm¨ uller, Di Bari, Pl¨ umacher ’02] dN N − ( D + S )( N N − N eq = N ) , dz dN ∆ L ε D ( N N − N eq = N ) − N ∆ L W , dz (where z = m N 1 / T and D , S , W = Γ D , S , W / Hz for decay, scattering and washout rates.) FInal baryon asymmetry: η ∆ B = d · ε · κ f d ≃ 28 1 27 ≃ 0 . 02 ( / L → / B conversion at T c + entropy dilution from T c to T recombination ). 51 κ f ≡ κ ( z f ) is the final efficiency factor, where � z − � z D dN N z ′ dz ′′ W ( z ′′ ) dz ′ κ ( z ) = dz ′ e D + S z i Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 7 / 45

  8. CP Asymmetry Φ † Φ † Φ † Φ L N β N α N α N α N α × × N β L × L C L C Φ L C l l l (a) (b) (c) tree self-energy vertex h l α | 2 − | � | � Γ( N α → L l Φ) − Γ( N α → L c l Φ c ) h c l α | 2 � k Φ c ) � ≡ ε l α = � ( � h † � h ) αα + ( � h c † � Γ( N α → L k Φ) + Γ( N α → L c h c ) αα k with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood ’03] � � h l α = � | ǫ αβγ | � h l α − i h l β β,γ m α ( m α A αβ + m β A βα ) − iR αγ [ m α A γβ ( m α A αγ + m γ A γα ) + m β A βγ ( m α A γα + m γ A αγ )] × , α | A βγ | 2 + m β m γ Re ( A 2 m 2 α − m 2 β + 2 im 2 α A ββ + 2 i Im ( R αγ )[ m 2 βγ )] � m 2 1 A αβ ( � � h l α � α h ∗ R αβ = ; h ) = l β . m 2 α − m 2 β + 2 im 2 α A ββ 16 π l Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 8 / 45

  9. Testability of Seesaw [Drewes ’15] In a bottom-up approach, no definite prediction of the seesaw scale. Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 9 / 45

  10. Testability of Leptogenesis Three regions of interest: High scale: 10 9 GeV � m N � 10 14 GeV . Can be falsified with an LNV signal at LHC. – see Julia’s talk Collider-friendly scale: 100 GeV � m N � few TeV . Can be tested in collider and/or low-energy (0 νββ , LFV) searches. –this talk Low-scale: 1 GeV � m N � 5 GeV . Can be tested at the intensity frontier: SHiP , DUNE or B-factories (LHCb, Belle-II). –see Jacobo’s talk Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 10 / 45

  11. Testability of Leptogenesis Three regions of interest: GUT/high scale: 10 9 GeV � m N � 10 14 GeV . Can be falsified with an LNV signal at LHC. [Deppisch, Harz, Hirsch ’14] – see Julia’s talk Collider-friendly scale: 100 GeV � m N � few TeV . Can be tested in collider and/or low-energy (0 νββ , LFV) searches. –this talk Low-scale: 1 GeV � m N � 5 GeV . Can be tested at the intensity frontier: SHiP , DUNE or B-factories (LHCb, Belle-II). –see Jacobo’s talk Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 11 / 45

  12. Testability of Leptogenesis Three regions of interest: GUT/high scale: 10 9 GeV � m N � 10 14 GeV . Can be falsified with an LNV signal at LHC. [Deppisch, Harz, Hirsch ’14] – see Julia’s talk Collider-friendly scale: 100 GeV � m N � few TeV . Can be tested in collider and/or low-energy (0 νββ , LFV) searches. –this talk Low-scale: 1 GeV � m N � 5 GeV . Can be tested at the intensity frontier: SHiP , DUNE or B-factories (LHCb, Belle-II). –see Jacobo’s talk Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 12 / 45

  13. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � 3 m N 1 ε max ∆ m 2 = 1 atm 16 π v 2 Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 13 / 45

  14. Vanilla Leptogenesis Hierarchical heavy neutrino spectrum ( m N 1 ≪ m N 2 < m N 3 ). Both vertex correction and self-energy diagrams are relevant. For type-I seesaw, the maximal CP asymmetry is given by � 3 m N 1 ε max ∆ m 2 = 1 atm 16 π v 2 Lower bound on m N 1 : [Davidson, Ibarra ’02; Buchm¨ uller, Di Bari, Pl¨ umacher ’02] � � � � η B 0 . 05 eV m N 1 > 6 . 4 × 10 8 GeV κ − 1 � f 6 × 10 − 10 ∆ m 2 atm Experimentally inaccessible! Also leads to a lower limit on the reheating temperature T rh � 10 9 GeV. In supergravity models, need T rh � 10 6 − 10 9 GeV to avoid the gravitino problem. [Khlopov, Linde ’84; Ellis, Kim, Nanopoulos ’84; Cyburt, Ellis, Fields, Olive ’02; Kawasaki, Kohri, Moroi, Yotsuyanagi ’08] Also in conflict with the Higgs naturalness bound m N � 10 7 GeV. [Vissani ’97; Clarke, Foot, Volkas ’15; Bambhaniya, BD, Goswami, Khan, Rodejohann ’16] Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 13 / 45

  15. Resonant Leptogenesis L l ( k, r ) N α ( p, s ) � ε ε ′ Φ( q ) Dominant self-energy effects on the CP -asymmetry ( ε -type) [Flanz, Paschos, Sarkar ’95; Covi, Roulet, Vissani ’96] . Resonantly enhanced, even up to order 1, when ∆ m N ∼ Γ N / 2 ≪ m N 1 , 2 . [Pilaftsis ’97; Pilaftsis, Underwood ’03] The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector. Heavy neutrino mass scale can be as low as the EW scale. [Pilaftsis, Underwood ’05; Deppisch, Pilaftsis ’10; BD, Millington, Pilaftsis, Teresi ’14] A testable leptogenesis scenario at both Energy and Intensity Frontiers. Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 14 / 45

  16. Flavor-diagonal Rate Equations � � � n γ H N d η N 1 − η N α α γ N α = L l Φ η N z d z eq l � � � � n γ H N d δη L η N α γ N α l = − 1 ε l α L k Φ η N z d z eq α k � �� � � − 2 3 δη L γ L l Φ k Φ c + γ L l Φ L k Φ + δη L γ L k Φ l Φ c − γ L k Φ l k L c L c L l Φ k L l ( k , r ) L k ( k , r ) b b N α ( p , s ) N β ( p , s ) [ b [ b c ] β h ˜ c ] l h ˜ α k Φ ( q ) Φ ( q ) L n ( k 2 , r 2 ) L k ( k 1 , r 1 ) [ L ˜ c ( k 2 , r 2 )] m L k ( k 1 , r 1 ) b h n [ b h ˜ c ] β [ b [ b c ] β h ˜ c ] β h ˜ β k m k b N β ( p ) b N β ( p ) Φ ( q 2 ) Φ ( q 1 ) Φ ˜ c ( q 2 ) Φ ( q 1 ) Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 15 / 45

  17. Analytic Solution [Deppisch, Pilaftsis ’11] 10 4 N 1 10 5 10 6 N 10 7 L L , 10 8 10 9 z 1 z 2 z c z 3 10 10 10 2 10 1 10 0 10 1 10 2 z � � α ε l α 3 η L ( z ) ≃ ( z 2 < z < z 3 ) 2 z K eff l l Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 16 / 45

  18. Flavordynamics M i � 10 12 GeV � 10 9 GeV M i � 10 12 GeV � 10 9 GeV Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 17 / 45

  19. Flavordynamics M i � 10 12 GeV � 10 9 GeV M i � 10 12 GeV � 10 9 GeV Flavor effects important at low scale [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto ’06; Nardi, Nir, Roulet, Racker ’06; De Simone, Riotto ’06; Blanchet, Di Bari, Jones, Marzola ’12; BD, Millington, Pilaftsis, Teresi ’14] Two sources of flavor effects: Heavy neutrino Yukawa couplings h α [Pilaftsis ’04; Endoh, Morozumi, Xiong ’04] l Charged lepton Yukawa couplings y k [Barbieri, Creminelli, Strumia, Tetradis ’00] l Three distinct physical phenomena: mixing, oscillation and decoherence. Captured consistently in the Boltzmann approach by the fully flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi ’14; ’15] Bhupal Dev (Washington U.) Leptogenesis and Colliders ACFI Workshop 17 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend