lehmann romano tsh ch 3
play

Lehmann & Romano, TSH Ch. 3 Setup: define a test function ( y ) - PowerPoint PPT Presentation

Lehmann & Romano, TSH Ch. 3 Setup: define a test function ( y ) from Y to [ 0 , 1 ] ( Y ) = Pr ( Y R ) if ( y ) = 1 then y R , if 0, y / R allows for the possibility of randomized tests if Y f ( y ;


  1. Lehmann & Romano, TSH Ch. 3 ◮ Setup: define a test function φ ( y ) from Y to [ 0 , 1 ] ◮ φ ( Y ) = Pr ( Y ∈ R ) ◮ if φ ( y ) = 1 then y ∈ R , if 0, y / ∈ R ◮ allows for the possibility of randomized tests ◮ if Y ∼ f ( y ; θ ) , then ◮ E θ φ ( Y ) = � φ ( y ) f ( y ; θ ) dy = probability of rejection ◮ under H 0 : θ ∈ Θ 0 , this is the size of the test, or type I error ◮ under H 1 : θ ∈ Θ 1 , this is the power of the test ◮ Goal: maximize β φ ( θ ) = E θ φ ( Y ) ∀ θ ∈ Θ 1 , subject to E θ φ ( Y ) ≤ α, ∀ θ ∈ Θ 0 STA 3000F: Nov 29, 2013 1/9

  2. Neyman-Pearson lemma ◮ Suppose Θ 0 is the point θ 0 , and similarly for Θ 1 ◮ Assume the existence of densities f 0 and f 1 with respect to the same measure µ 1. Given 0 ≤ α ≤ 1, there exists a test function φ and a constant k such that E 0 φ ( Y ) = α (1) and � 1 when f 1 ( y ) > kf 0 ( y ) , φ ( y ) = (2) f 1 ( y ) < kf 0 ( y ) . 0 when 2. If a test satisfies (1) and (2) for some k , then it is most powerful for testing f 0 against f 1 at level α 3. If φ is most powerful at level α for testing f 0 against f 1 , then for some k it satisfies (2), a.e. µ , and satisfies (1) unless there exists a test of size < α and with power 1. STA 3000F: Nov 29, 2013 2/9

  3. Proof 1. ◮ trivial for α = 0 and α = 1 allow k = ∞ ◮ 1. define α ( c ) = Pr 0 { f 1 ( Y ) > cf 0 ( Y ) } = Pr { f 1 ( Y ) / f ) 0 ( Y ) > c } . ◮ 1 − α ( c ) is a cumulative distribution function ◮ so α ( c ) is non-increasing, right-continuous, α ( −∞ ) = 1 , α ( ∞ ) = 0 ◮ Given 0 < α < 1, let c 0 be such that α ( c 0 ) ≤ α ≤ α ( c − 0 ) ◮  f 1 ( y ) > c 0 f 0 ( y ) 1 when   α − α ( c 0 ) when f 1 ( y ) = c 0 f 0 ( y ) φ ( y ) = α ( c − 0 ) − α ( c 0 )  0 when f 1 ( y ) < c 0 f 0 ( y )  ◮ � f 1 ( Y ) � E 0 φ ( Y ) = Pr 0 + f 0 ( Y ) STA 3000F: Nov 29, 2013 3/9

  4. ... proof 2. ◮ Suppose φ is a test satisfying (1) and (2), and that φ ∗ is another test with E 0 φ ∗ ( Y ) ≤ α . ◮ Denote by S + and S − the sets in Y where φ ( y ) − φ ∗ ( y ) > 0 and < 0. ◮ In S + , φ ( y ) > 0 so f 1 ( y ) ≥ kf 0 ( y ) , and ◮ � � ( φ − φ ∗ )( f 1 − kf 0 ) d µ = S + ∪ S − ( φ − φ ∗ )( f 1 − kf 0 ) d µ ≥ 0 ◮ difference in power: � � ( φ − φ ∗ ) f 1 d µ ≥ k ( φ − φ ∗ ) f 0 d µ ≥ 0 STA 3000F: Nov 29, 2013 4/9

  5. ... proof 3. ◮ Let φ ∗ be MP level α , and φ satisfy (1) and (2) ◮ On S + ∪ S − , φ and φ ∗ differ. Let S = S + ∪ S − ∩ { y : f 1 ( y ) � = kf 0 ( y ) } , and assume µ ( S ) > 0 ◮ � � S + ∪ S − ( φ − φ ∗ )( f 1 − kf 0 ) d µ = ( φ − φ ∗ )( f 1 − kf 0 ) d µ > 0 S ◮ implies φ is more powerful than φ ∗ ◮ contradiction, hence µ ( S ) = 0 ◮ if φ ∗ had size < α and power < 1, could add points to rejection region until either E 0 φ ∗ ( Y ) = α or E 1 φ ∗ ( Y ) = 1 ◮ test is unique if { y : f 1 ( y ) = kf 0 ( y ) } has measure 0 STA 3000F: Nov 29, 2013 5/9

  6. Comments ◮ discreteness: e.g. Y ∼ Bin ( n , p ) ◮ MP test has rejection region R determined by { y > d α } ◮ not all values of α attainable: e.g. CH Example 4.9 Y ∼ Poisson ( µ ) ◮ H 0 : µ = 1 , H 1 : µ = µ 1 > 1, MP test Y ≥ d α Table : attained significance levels Pr ( Y > y ; µ = 1 ) Pr ( Y > y ; µ = 1 ) y y 0 1 4 0.0189 1 0.632 5 0.0037 2 0.264 6 0.0006 . . . . 3 0.080 . . ◮ if critical regions are nested , i.e. R α 1 ⊂ R α 2 , α 1 < α 2 , then p obs = inf ( α ; y obs ∈ R α ) ◮ asymmetry: Y ∼ N ( µ, 1 ) , H 0 : µ = 0 , H 1 : µ = 10 , y obs = 3 STA 3000F: Nov 29, 2013 6/9

  7. Bayesian testing see CH Example 10.12 ◮ simple H 0 , simple H 1 : Pr ( H 0 | y ) Pr ( H 1 | y ) = Pr ( H 0 ) f 0 ( y ) Pr ( H 1 ) f 1 ( y ) ◮ similarly, with H 1 , . . . H k potential alternatives Pr ( H 0 | y ) 0 | y ) = Pr ( H 0 ) f 0 ( y ) Pr ( H c Σ j Pr ( H j ) f j ( y ) ◮ sharp null hypothesis: H 0 : θ = θ 0 , H 1 : θ � = θ 0 Pr ( H 0 | y ) π 0 f ( y ; θ 0 ) 0 | y ) = Pr ( H c � ( 1 − π 0 ) π 1 ( θ ) f ( y ; θ ) d θ ◮ nuisance parameters Pr ( H 0 | y ) π 0 π ( λ | h 0 ) f ( y | ψ 0 , λ ) d λ 0 | y ) = Pr ( H c � � ( 1 − π 0 ) π ( ψ, λ | H 1 ) f ( y | ψ, λ ) d ψ d λ STA 3000F: Nov 29, 2013 7/9

  8. ... testing ◮ Bayes factor B 10 = Pr ( y | H 1 ) Pr ( y | H 0 ) ◮ typically Pr ( y | h i ) = � f ( y | H i , θ i ) π ( θ i | H i ) d θ i , i = 0 , 1 SM Ch. 11.2 ◮ cannot be computed with improper priors STA 3000F: Nov 29, 2013 8/9

  9. Nature, PNAS, AoS articles by Johnson ◮ developed an ‘objective’ Bayesian test for comparison to p -values ◮ “A p -value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding” ◮ “He advocates for scientists to use more stringent p -values of 0.005 or less” ◮ see also CH Example 10.12 and SM Example 11.15 ◮ emphasis on point hypotheses drives most of these anomalous results ◮ e.g. Pr ( θ > 0 | y ) STA 3000F: Nov 29, 2013 9/9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend