hodges lehmann inverse likelihood estimates hle s kjell
play

HODGES-LEHMANN INVERSE LIKELIHOOD ESTIMATES (HLES) KJELL DOKSUM - PowerPoint PPT Presentation

HODGES-LEHMANN INVERSE LIKELIHOOD ESTIMATES (HLES) KJELL DOKSUM DEPT. OF STATISTICS UNIVERSITY OF WISCONSIN-MADISON COLUMBIA UNIVERSITY 4TH LEHMANN SYMPOSIUM RICE UNIV. MAY 11, 2011 KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLEs


  1. HODGES-LEHMANN INVERSE LIKELIHOOD ESTIMATES (HLE’S) KJELL DOKSUM DEPT. OF STATISTICS UNIVERSITY OF WISCONSIN-MADISON COLUMBIA UNIVERSITY 4TH LEHMANN SYMPOSIUM RICE UNIV. MAY 11, 2011 KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 1/31

  2. Figure: Javier Rojo KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 2/31

  3. ACKNOWLEDGEMENTS AKI OZEKI UNIV. OF WISCONSIN KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 3/31

  4. OUTLINE 1 SOME LIKELIHOODS 2 ASYMPTOTIC DISTRIBUTIONS OF HLE’s 3 MINIMAX RESULTS 4 ONE STEP ESTIMATORS KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 4/31

  5. WHY HL-ESTIMATORS? 1 IN LINEAR REGRESSION MODELS WITH ERROR ∼ F , THE HL NORMAL SCORES ESTIMATE IS ASYMPTOTICALLY MORE EFFICIENT THAN THE LEAST SQUARES ESTIMATE, UNIFORMLY IN F . 2 SCHOLZ’S THEOREM. FOR EACH ONE SAMPLE ESTIMATE THAT CAN BE WRITTEN AS A LINEAR COMBINATION OF ORDER STATISTICS, THERE IS A HL-ESTIMATE THAT IS ASYMPTOTICALLY MORE EFFICIENT. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 5/31

  6. SOME LIKELIHOODS X = DATA = ( Y , Z ), Y ∈ R , Z ∈ R p . θ = ( β ∈ R p , Λ ∈ F ) = PARAMETER � LIKELIHOOD = p ( x i ; θ ) i λ ( y i ; β | z i ) � COX LIK = � j ≥ i λ ( y i ; β | z j ) i p ( x i ; θ ), � p ( x i ; θ ) = 1. � EMPIRICAL LIK = i KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 6/31

  7. SOME LIKELIHOODS PROFILE EMPIRICAL (PE) LIKELIHOOD � L PE ( β ) = sup { p ( x i ; θ ); Λ } (1) ˆ β PE = arg max L PE ( β ) THIS ESTIMATE ˆ β PE IS A FUNCTION OF THE RANK R 1 , · · · , R n OF Y 1 , · · · , Y n KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 7/31

  8. SOME LIKELIHOODS HOEFFDING LIK ≡ L H ( r ( y ); β ) = P ( R = r ) = �� � p ( V ( r i ) ; θ | z i ) 1 , n ! E 0 p ( V ( r i ) ; θ 0 | z i ) i WHERE r i ≡ r ( y i ) ≡ RANK ( y i ). V (1) < · · · < V ( n ) ARE p ( v ; θ 0 | z ) ORDER STATISTICS. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 8/31

  9. RANK LIKELIHOOD ESTIMATOR EXAMPLE : Y i = z T i β + ǫ i , ǫ i ∼ F , IID. FORWARD RANK MLE = ARG MAX L H ( r ( y ); β ) = KP MLE KP= KALBFLEISCH-PRENTICE (1973) ˆ β KP SOLVES ∇ β L H ( r ( y ); β ) = 0 KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 9/31

  10. RANK LIKELIHOOD ESTIMATOR BECAUSE RANK (Λ( y i )) = RANK ( y i ). FOR Λ ր , ˆ β KP APPLIES TO SEMIPARA. TRANS. MODEL. ˆ β KP IS A FUNCTION OF THE RANKS OF Y i , AS IS THE COX ESTIMATE. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 10/31

  11. HODGES-LEHMANN INVERSE MLE (1963) DEFINITION : IN THE LINEAR MODEL, ˆ β HL SOLVES ∇ β L H ( r ( y − z T β ∗ ); β ) | β =0 = 0 1ST COMPUTE ∇ β L H ( r ( y ; β )) | β =0 , THEN CONSTRUCT AN ESTIMATING EQUATION IN β ∗ BY REPLACING y WITH y − z T β ∗ . HERE y − z T β IS THE ”INVERSE” OF y = z t β + ǫ . KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 11/31

  12. HODGES-LEHMANN INVERSE MLE (1963) HL INVERSE LIK. EST: ALIGN RANK OF RESIDUALS WITH THE ”BASELINE” RANKS USING HOEFFDING LIKELIHOOD. EXAMPLE : TWO SAMPLE CASE, LOGISTIC SHIFT MODEL, F 2 ( x ) = F 1 ( x − ∆), ∇ ∆ L H | ∆=0 = WILCOXON STAT ˆ ∆ HL = med ( X 2 j − X 1 i ), KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 12/31

  13. GENERAL HODGES-LEHMANN INVERSE MLE MODEL : Y = h ( ǫ, z , β ), LET g ( y ; z , β ) BE THE SOLUTION (INVERSE) FOR ǫ OF h ( ǫ, z , β ) = y . ˆ β HL SOLVES ∇ β L H [ g ( y ; z , β ∗ ); β ] | β =0 = 0 KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 13/31

  14. GENERAL HODGES-LEHMANN INVERSE MLE IN THE EXAMPLE Y i = z T i β + ǫ , ∇ β L H [ r ( y − z T β ∗ ); β ] | β =0 ARE p LINEAR RANK STATISTICS n T nj ( β ∗ ) = � z j ) a n ( r i ( β ∗ )) , ( z ij − ¯ j = 1 , · · · , p i =1 WHERE r i ( β ∗ ) = RANK ( y i − z T i β ∗ ), AND � r � a n ( r ) = a , n +1 a ( u ) = − f ′ f ( F − 1 ( u )) KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 14/31

  15. GENERAL HODGES-LEHMANN INVERSE MLE SCALE MODEL : Y = ǫ exp[ z T β ], ǫ ∼ F ǫ = Y / exp[ z T β ], a n ( RANK ( y i / exp[ z T i β ])), � r � a n ( r ) = a 1 , n +1 a 1 ( u ) = − F − 1 ( u ) f ′ f ( F − 1 ( u )) − 1 HERE ˆ β HL SOLVES i β ∗ ]); β ] | β =0 = 0 ∇ β L H [ r ( y i / exp[ z T WHICH IS EQUIVALENT TO n � z j ) a n ( r i ( β ∗ )) = 0 , ( z ij − ¯ j = 1 , · · · , p i =1 KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 15/31

  16. GENERAL HODGES-LEHMANN INVERSE MLE LINEAR MODELS : r EX1 : ǫ ∼ LOGISTIC = ⇒ a n ( r ) = n +1 ⇒ a n ( r ) = Φ − 1 � r � EX2 : ǫ ∼ NORMAL = , n +1 NORMAL SCORES SCALE MODEL : � r � EX3 : ǫ ∼ EXP = ⇒ a n ( r ) = − log 1 − , n +1 ˆ β HL IS THE LOGISTIC SCORES ESTIMATOR KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 16/31

  17. ASYMPTOTICS THEOREM (JAECKEL 1972) : IN THE Y i = z T i β + ǫ MODEL, 1 THE HL ESTIMATE ˆ β HL IS A MAXIMIZER OF n � exp[ − ( y i − z T i β ) · a n ( RANK ( y i − z T S ( β ) = i β ))] i =1 2 HERE log[ S ( β )] is NONNEGATIVE, CONTINUOUS AND CONCAVE. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 17/31

  18. ASYMPTOTICS IN THE LINEAR MODEL, LET ϕ ( u , f 0 ) = − f ′ f 0 ( F − 1 0 ( u )). THEN, 0 � � 1 � 2 0 [ ϕ ( u , f 0 ) − ¯ φ ] 2 du √ n (ˆ Σ − 1 ) β HL − β ) → N (0 , � 1 0 ϕ ( u , f 0 ) ϕ ( u , f ) du � 1 WHERE ¯ 0 ϕ ( u , f 0 ) du ,Σ = LIM n →∞ n − 1 Z T Z , φ = Z = CENTERED DESIGN MATRIX, ǫ i ∼ F , f = F ′ HERE f 0 ( · ) GENERATES L H ( · ) AND ˆ β HL . f ( · ) IS THE TRUE DENSITY of ǫ . KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 18/31

  19. ASYMPTOTIC LINEAR MODEL EXAMPLES : 1 F 0 ()=LOGISTIC � � √ n (ˆ 1 Σ − 1 ) β HL − β ) → N (0 , � 1 0 f 2 ( u ) du ) 2 12( 2 F 0 ()= NORMAL (0 , σ 2 ) � � √ n (ˆ Σ − 1 β HL − β ) → N (0 , ) � 1 0 Φ − 1 ( u ) φ ( u , f ) du ) 2 ( KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 19/31

  20. ASYMPTOTIC INEQUALITY HODGES-LEHMANN (56) CONJECTURE. CHERNOFF-SAVAGE (58) THEOREM. IF ˆ β HL IS BASED ON SCORES DERIVED BY TAKING f 0 = N (0 , 1), AND IF ˆ β MLE IS THE MLE FOR THE MODEL WITH ǫ ∼ N (0 , σ 2 ), THEN ASYMPTOTIC VARIANCE F (ˆ β HL ) ≤ ASYMPTOTIC VARIANCE F (ˆ β MLE ) WHERE F = TRUE DIST. OF ǫ . EQUALITY ONLY WHEN F = N (0 , σ 2 ). KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 20/31

  21. IN THE AFT MODEL WITH ǫ ∼ F , THE HL EXPONENTIAL SCORES STATISTIC SATISFIES � 2 � √ n (ˆ 1 Σ − 1 ) β HL − β ) → N (0 , � 1 0 t λ ( t ) dF ( t ) WHERE λ ( t ) = f ( t ) / [1 − F ( t )]. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 21/31

  22. NAIVE MINIMAX THEORY RESULT : THE COX ESTIMATE IS ASYMPTOTICALLY MINIMAX FOR THE PROPORTIONAL HAZARD (PH) MODEL: λ ( y ; z ) = λ 0 ( y ) e z T β PROOF : STEP A : THE COX ESTIMATE IS OPTIMAL FOR THE EXPONENTIAL MODEL, β R E ( β, ˆ β ) = R E ( β, ˆ INF ˆ β C ) (2) STEP B : THE PH MODEL CAN BE WRITTEN AS Λ 0 ( Y ) ∼ EXP-DISTR( z T β ) WHERE Λ 0 ր IS THE BASELINE HAZARD FUNCTION. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 22/31

  23. NAIVE MINIMAX THEORY THE COX ESTIMATE ˆ β C IS INVARIANT, β C ( y ) = ˆ ˆ β C (Λ 0 ( y )), SO IT HAS CONSTANT RISK, R F ( β, ˆ β C ) = R E ( β, ˆ sup β C ) , (3) F F ( y | z ) ∈ PH STEP C : SINCE THE EXP MODEL IS PH, R F ( β, ˆ β ) ≥ R E ( β, ˆ sup β ) , (4) F F ( y | z ) ∈ PH STEP D : (2),(3),(4) ⇒ R F ( β, ˆ R F ( β, ˆ sup β C ) = inf sup β ) . QED . ˆ F β F KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 23/31

  24. NAIVE MINIMAX THEORY NON-NAIVE PROOF: PAGE 332 of BICKEL, KLAASSEN, RITOV, WELLNER. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 24/31

  25. NAIVE MINIMAX THEORY RESULT : THE HL EXP SCORES EST IS A MINIMAX FOR THE IHR ACCELERATED FAILURE TIME MODEL (IHRAFT) Y = Y 0 exp( z T β ) , Y 0 ∼ F , WITH F ∈ IHR = INCR. HAZARD RATE PROOF : STEP A : THE HL EXP. SC. ESTIMATE IS OPTIMAL FOR THE EXPONENTIAL MODEL, β R E ( β, ˆ β ) = R E ( β, ˆ INF ˆ β HL ) (5) KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 25/31

  26. NAIVE MINIMAX THEORY STEP B : THE EXP MODEL IS LEAST FAVORABLE FOR ˆ β HL R F ( β, ˆ β HL ) = R E ( β, ˆ sup β HL ) , (6) F F ( y | z ) ∈ IHRAFT KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 26/31

  27. NAIVE MINIMAX THEORY STEP C : SINCE THE EXP MODEL IS IHRAFT, R F ( β, ˆ β ) ≥ R E ( β, ˆ sup β ) , (7) F F ( y | z ) ∈ IHRAFT STEP D : (5),(6),(7) ⇒ R F ( β, ˆ R F ( β, ˆ sup β HL ) = inf sup β ) . QED . ˆ F β F TO PROVE STEP B, USE DOKSUM (1967); ARGUMENT BASED ON VAN ZWET ORDERINGS. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 27/31

  28. ASYMPTOTIC miniMAX RESULT CONSIDER f 0 = LOGISTIC, SO r i a n ( r i ) = (8) n + 1 THEN ˆ β HL IS ASYMPTOTICALLY miniMAX OVER THE CLASS OF DISTRIBUTIONS WITH (VAN ZWET TYPE) LIGHTER TAILS THAN THE LOGISTIC DISTRIBUTION. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 28/31

  29. ONE STEP ESTIMATIORS LET ˆ τ BE A CONSISTENT ESTIMATOR OF 1 τ = (9) � 1 0 φ ( u , f 0 ) φ ( u , f ) du AND LET ˆ β LSE BE THE LSE OF β . DEFINE τ · ( Z T Z ) − 1 · T n ( RANK ( Y − Z T ˆ β HL = ˆ ˆ β LSE + ˆ β LSE )) (10) THEN, √ n (ˆ β HL − β ) → N (0 , Γ) (11) JURECKOVA(69), KRAFT AND VAN EEDEN(72), HETTMANSPERGER, MCKEAN, TSIATIS, ETC. KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 29/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend