lecure 3 models and measurements for thermal syste ms
play

Lecure 3: Models and measurements for thermal syste ms Types of - PowerPoint PPT Presentation

Eurotherm Advanced School Metti 5 Roscoff June 13-18, 2011 Lecure 3: Models and measurements for thermal syste ms Types of inverse problems Denis Maillet , Jean-Luc Battaglia, Daniel Petit LEMTA Nancy - I2M, Dpt. TREFLE Bordeaux -


  1. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Lecure 3: Models and measurements for thermal syste ms Types of inverse problems Denis Maillet , Jean-Luc Battaglia, Daniel Petit LEMTA Nancy - I2M, Dpt. TREFLE Bordeaux - Institut P’ Poitiers 1. Objectives, models & direct problems, internal/external representations 2. Parameterizing a function & parcimony principle 3. State-space representation, model terminology & structure, measurements 4. Different types of inverse problems, measurements & noise, bias 5. Physical model reduction 1

  2. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 1. Objectives of a mode l � (in heat transfer) First objective: Simulation of physical reality = Direct Problem u ( t ) : heat source/flux, variable external temperature : measured temperature at given time t and given location y : modelled temperature at given time t and given location y mo 2

  3. Example: model of a semi infinite medium (1 input - 1 output) − k Perfect temperature sensor: y = y exact = y ( t ) T ( x , t ) Output equation: mo s = + y ( t ) y ( t ) y ( t ) Solution of direct problem: mo mo relax mo forced ∞ ( ) ( ) ∫ ∫ t = + − τ τ τ y ( t ) G x , x , t T ( x ) d x Z t u ( ) d External representation: mo s 0 0 0 convolution product Green’s function = / ρ c a k  ( ) 2 ( ) 2  1     − + ( ) 1 x x x x ( ) = exp − 2 / 4 ( ) Z t x a t exp s exp s =   −  +  −   G x , x, t s     s b π t 4 4 2 π a t a t a t c   = ρ b k       3

  4. Perfect temperature sensor: y = y * zero initial Thermal impedance: temperature field 1 ( ) ( ) exp 2 / 4 = − Z t x a t s π b t ( ) 1 ( ) exp = Z p - x p / a s b p β ) x s p = Laplace parameter (s -1 ) ∞ ( ) ( ) ( ) ( ) ( ) ( ) ∫ with exp d = = − y p Z p u p f p f t pt t forced mo 0   a   Parameter list β = ( a , b , x s ) = β b Parameter « vector »      x  s ( ) 1 2 / 2 2 2 ⇒ β β β β = + + a b x b in J m -2 K -1 s -1/2 - x s in m a in W m -2 - s M of the white box type (internal representation) : internal parameters of physical nature 4

  5. Semi-infinite medium model: general case { } = β x , u ( . ) , T 0 . ( ) List of data of Direct Problem:   a structural input initial   parameter (stimulus) state = β b vector     functions  x  s 5

  6. 2. Problem of function parameterizing & Parcimony principle ∞ ∑ { } = u ( t ) u f ( t ) � with f f j j 1 2 = j 1 function basis of infinite number of functions: [ 0 t sup ] → R on [ 0 t sup ] [ ] T f ( ) ( ) ( ) [ ] f = T u = u T � ⇒ = t f t f t � u u u ( t ) ( t ) 1 2 1 2 column vectors with an infinite number of components ∞ = ∑ ⇒ = u ( t ) u f ( t ) u u ( t ), f ( t ) j j j j = j 1 projection of u ( t ) onto f j ( t )   u truncation 1   = ∑ n u ≠   u ⇒ = u ( t ) u f ( t ) u ( t ) 2 u ( t ) replaced by in practice: param j j   � = j 1    u  n Good approximation: The model-builder has to choose 2 things: high n ⇒ large number of parameters 1) functions f j 2) their number n 6

  7. Parameterization: 2 possible choices of local function basis n ∑ = u ( t ) u f ( t ) param j j = j 1 door functions hat functions 0 if t : local discretized value → interpolated u param ( t ) u u : averaged value over an interval j j • interesting for : • interesting for : β β ( T ) (P) u ( T ) T (P) u ( t ) 0 non uniform linear excitation initial 7 non linear temperature dependent heterogeneous temperature excitation thermophysical properties material

  8. Parameterization (continued) Remarks non-local bases available: eigenfunctions f j of the heat equation • (method of separation of variables) = u param t ( ) Fourier series, for example t ∫ orthogonal bases (with a unit function norm N j ) interesting: sup = δ • f ( t ) f ( t ) d t N j k j j k t inf • non constant time step possible Extended parameter vector x • gathering the Direct Problem data:  β    { } x u = → = β x , u ( . ) , T 0 (P)   T     0 parameterized list functions 8

  9. Parcimony principle: limitation of the number of parameters (or of degrees of freedom) to be sought inverter : beginner experienced constraint objectives: = parameters greediness: ideal realistic too many parameters sought parameterization parameterization / quality of measurements or available a priori information 9

  10. 3. State-space representation, model terminology & structure, measurements ( ) ∂ T k grad + = ρ + div T q c Boundary, interface and initial conditions ∂ vol t W/m 3 distributed parameter system = State of the system = continuous temperature field: T (P , t ) T ( t ) P [ ] T = � ( t ) T ( t ) T ( t ) T ( t ) Discretized state becoming = vector : 1 2 N in a N dimension space (number of nodes) T d lumped parameter system: E T U T T = = = ( t , , ) with ( t t 0 ) 0 d t [ ] U = Linear heat source (excitation): q vol (P, t ) T � ( t ) u ( t ), u ( t ) u p t ( ) 1 2 p excitated nodes [ ] U = T q vol ( T ( P, t )) � ( t ) u ( T ( t )), u ( T ( t )) u ( T p t ( )) Non-linear heat source: 1 2 p excitated nodes 10

  11. State-space representation (continued) Case of a linear heat source with temperature independent thermophysical properties and coefficients E T U A T B U A B = + ( t , , ) with and : constant matrices (selection of observed nodes) 11

  12. Output equation: detailed ( )  T t  1   ( ) T t   2   ( ) T t 3 q = 5 observed temperatures ( )  y t  0 0 0 0 1 0 0 0 0     � 1 mo ( ) T t       4 ( ) 0 0 0 0 0 0 0 0 0 y t (output) �   2   mo   ( ) T t 5   ( )   ( ) = y t = 0 0 0 0 0 0 0 0 0   y t � 3 mo mo      �  ( ) y t 0 0 0 0 0 0 0 0 0   �     4 mo N = 20 nodes ( ) T t     17   ( ) y t 0 0 0 0 0 1 0 0 0 �     5 mo  ( )  T t 18   ( ) T t   19   ( ) T t   20 12

  13. T d A T B U = + Linear state equation : d t Explicit solution for temperature field: t ∫ T exp A T exp A B U = − + − τ τ τ ( t ) ( ( t t ) ) ( ( t ) ) ( ) d 0 0 t 0 and for model output: t ∫ y C exp A T C exp A B U = − + − τ τ τ ( t ) ( ( t t ) ) ( ( t ) ) ( ) d mo 0 0 t 0 Relaxation of initial state forced (convolution) response Remarks: - advection case possible (dispersion in porous medium, one-temperature model): ( ) ∂ T div λ grad − ρ grad + = ρ + Boundary, interface and initial conditions T c v . T q c vol f ∂ t - coupled modes transfer : radiation in semitransparent absorbing medium (Heat equation + radiative transfer equation) ⇒ composite state X : T   ( t ) Discretized temperature field: position X = ( t )   I  ( t )  Discretized intensity field: wavelength, direction, position 13

  14. T T A B U y C A B U = − − ⇒ = − − d - steady state case (linear) : 1 1 A T B U = + = 0 mo d t Model terminology and structure Before parameterization After parameterization x = η = η y mo ( t , ) y mo ( t , x ) • single output: extended parameter scalar list scalar vector y = y x mo = η η ( t , x ) ( t , ) • multiple output: mo column extended parameter list column vector vector vector   β   { } = x u = , ( ) , 0 ( P ) . • data β x u T     T   0 η ( t , . ) or η η ( t , . ) : scalar or vector function η η = structure of the model x or x : corresponding data (list/vector) 14

  15. Structure of a parameterized model in heat transfer Direct Problem Data dimensions of system parametrized shape thermophysical properties contact resistances heat transfer coefficients emissivities   β struct … = β   β   Model output pos location of detectors 15

  16. Comparison between measurements and state model 16

  17. Direct and inverse problems data y known x ? MODEL Direct problem : mo part of x ? known y Inverse problem : MODEL Objective of inverse problem: finding a part x r of x , using additional information (output y or something else)   β struct   β   x = pos Extended parameter vector:  U  ( t )   T   0 x   x sought ( r esearched) parameters = r   x   c omplementary part: known c 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend