lagrangian geometry of the gauss images of isoparametric
play

Lagrangian Geometry of the Gauss Images of Isoparametric - PowerPoint PPT Presentation

. Lagrangian Geometry of the Gauss Images of Isoparametric Hypersurfaces . Yoshihiro OHNITA Osaka City University Advanced Mathematical Institute (OCAMI) & Department of Mathematics, Osaka City University Workshop on the Isoparametric


  1. . Lagrangian Geometry of the Gauss Images of Isoparametric Hypersurfaces . Yoshihiro OHNITA Osaka City University Advanced Mathematical Institute (OCAMI) & Department of Mathematics, Osaka City University Workshop on the Isoparametric Theory, Beijing Normal University, Beijing, P . R. China, June 1-7, 2019 June 2, 2019 1 / 42

  2. This talk is based on Joint works with Hui Ma (Tsinghua University, Beijing, P . R. China), Hiroshi Iriyeh (Ibraki University, Mito, Japan), Reiko Miyaoka (Tohoku Univerisity, Sendai, Japan). 2 / 42

  3. . Plan of this talk . 1. Lagrangian submanifolds in symplectic manifolds 2. Lagrangian submanifolds in Einsterin-K¨ ahler manifolds 3. Lagrangian submanifolds in complex hyperquadrics 4. Gauss images of isoparametric hypersurfaces in spheres 5. Hamiltonian non-displaceability of a Lagrangian submanifold 6. Hamiltonian non-displaceability of Gauss images of isoparametric hypersurfaces 7. Open problems and related questions . 3 / 42

  4. 0. Isoparametric Theory and Symplectic Geometry It is an interesting question to ask what relationship is between “Isoparametric Theory” ⇐ ⇒ “Symplectic Geometry ” ?? “Isoparametric Hypersurfaces” ⇐ ⇒ “Lagrangian Submanifolds” ?? 4 / 42

  5. 3. Lagrangian Submanifolds in Symplectic Manifolds ( M 2 n , ω ) φ : L − → immersion symplectic mfd. . Definition . . . φ ∗ ω = 0 1 “Lagrangian immersion” ⇐ ⇒ ( ⇔ φ : “isotropic ”) def . . dim L = n . 2 φ − 1 TM /φ ∗ TL T ∗ L linear isom. � ∈ ∈ v �− → α v := ω ( v , · ) 5 / 42

  6. . Hamiltonian Deformations . → ( M 2 n , ω ) immersion with φ 0 = φ φ t : L − V t := ∂φ t ∂ t ∈ C ∞ ( φ − 1 t TM ) def φ t : Lagr. imm. for ∀ t “Lagrangian deformation” ⇐ ⇒ ⇒ α V t ∈ Z 1 ( L ) for ∀ t ⇐ closed def α V t ∈ B 1 ( L ) for ∀ t “Hamiltonian deformation” ⇐ ⇒ exact Hamil. deform. = ⇒ Lagr. deform. The difference between Lagr. deform. and Hamil. deform. is equal to H 1 ( L ; R ) � Z 1 ( L ) / B 1 ( L ) . . 6 / 42

  7. . Characterization of Hamiltonian Deformations in terms of isomonodromy deformations . φ t : L − → M : Lagr. deform. Suppose 1 γ [ ω ] integral ( ∃ γ ) . { φ t } : Hamil. deform. . φ − 1 → ∃ ( E , ∇ ) t E − − − − −   ⇕     φ − 1 t ∇   � � flat A family of flat connections { } φ t φ − 1 L − − − − − → ( M , ω ) t ∇ has same holonomy . homom. ρ : π 1 ( L ) − → U ( 1 ) (“isomonodromy deformation”) . 7 / 42

  8. 1. Lagrangian Submanifolds in Complex Hyperquadrics . Complex Hyperquadrics . . Q n ( C ) := { [ z ] ∈ C P n + 1 | z 2 n + 1 = 0 } ⊂ C P n + 1 0 + z 2 1 + · · · + z 2 . Real Grassmann manifolds of oriented 2 -planes . Gr 2 ( R n + 2 ) ⊂ Λ 2 R n + 2 � := { [ W ] | [ W ] is an oriented 2 -dim. vect. subsp. of R n + 2 } . Identification √ Gr 2 ( R n + 2 ) ∋ [ W ] ← � → [ a + − 1b ] ∈ Q n ( C ) where { a , b } : an orth. basis of [ W ] compatible with its ori. M = Q n ( C ) � � Gr 2 ( R n + 2 ) � SO ( n + 2 ) / SO ( 2 ) × SO ( n ) 8 / 42 is a cpt. Herm. symm. sp. of rank 2 with the invariant

  9. Q n ( C ) � � Gr 2 ( R n + 2 ) � SO ( n + 2 ) / SO ( 2 ) × SO ( n ) . Oriented hypersurface in a sphere . N n ֒ → S n + 1 ( 1 ) ⊂ R n + 2 x : the position vector of points of N n n : the unit normal vector field of N n in S n + 1 ( 1 ) . . “Gauss map” . √ G : N n ∋ p �− → [ x ( p ) + − 1 n ( p )] = x ( p ) ∧ n ( p ) ∈ Q n ( C ) is a Lagrangian immersion. . . Proposition . Deformation of N n = Hamiltonian deformation of G . 9 / 42

  10. Remark. ( 2 n + 1 ) -dimensional real Stiefel manifold V 2 ( R n + 2 ) := { ( a , b ) | a , b ∈ R n + 2 orthonormal } � SO ( n + 2 ) / SO ( n ) the standard Einstein-Sasakian manifold over Q n ( C ) . The natural projections ϕ : V 2 ( R n + 2 ) ∋ ( a , b ) �− → a ∈ S n + 1 ( 1 ) , π : V 2 ( R n + 2 ) ∋ ( a , b ) �− → a ∧ b ∈ Q n ( C ) . US n + 1 = L = ˆ ˜ N n V 2 ( R n + 2 ) = P ✲ Leg. S n SO ( 2 ) � S 1 ϕ π � ❄ ❄ ❄ Q n ( C ) ⊃ π (ˆ N n S n + 1 N ) = G ( N n ) = L ✲ ori.hypsurf. Lag. N n of N n ֒ Here the Legendrian life ˜ → S n + 1 ( 1 ) to V 2 ( R n + 2 ) is defined by N n ∋ p �− → ( x ( p ) , n ( p )) ∈ V 2 ( R n + 2 ) . 10 / 42

  11. 2. The Gauss images of isoparametric hypersurfaces Q n ( C ) � � Gr 2 ( R n + 2 ) � SO ( n + 2 ) / SO ( 2 ) × SO ( n ) . Suppose . N n ֒ → S n + 1 ( 1 ) ⊂ R n + 2 with constant principal curvatures “isoparametric hypersurface” . . “Gauss map” . G : N n ∋ p Lagr. imm. x ( p ) ∧ n ( p ) ∈ Q n ( C ) �− → L n = G ( N n ) � N n / Z g ֒ N n − → Q n ( C ) → Z g cpt. embedded minimal Lagr. submfd . . Here g := # { distinct principal curvatures of N n } , m 1 , m 2 : multiplicities of the principal curvatures. . 11 / 42

  12. . Suppose . N n ֒ → S n + 1 ( 1 ) ⊂ R n + 2 has g constant principal curvatures. “isoparametric hypersurface” . unzner] N n extends to a compact embedded [E. Cartan, M¨ algebraic hypersurface of S n + 1 ( 1 ) defined by a real homogeneous polynomial F of degree g , so called Cartan-M¨ unzner polynomial . The isoparametric function f = F | S n + 1 ( 1 ) is given by ( x ∈ S n + 1 ( 1 )) , f ( x ) = F ( x ) = cos gt ( x ) where t is a spherical distance function to a focal manifold. g must be 1 , 2 , 3 , 4 or 6 (M¨ unzner, 1981-82). For each p ∈ N , a unit normal geodesic at p to N x ( θ ) := cos θ x ( p ) + sin θ n ( p ) ( 0 ≤ θ ≤ 2 π ) satisfies θ ∈ π x ( θ ) ∈ N ⇐ ⇒ g Z . 12 / 42

  13. x ( θ ) := cos θ x ( p ) + sin θ n ( p ) ( 0 ≤ θ ≤ 2 π ) 13 / 42

  14. Q n ( C ) � � Gr 2 ( R n + 2 ) � SO ( n + 2 ) / SO ( 2 ) × SO ( n ) . Suppose . N n ֒ → S n + 1 ( 1 ) ⊂ R n + 2 with constant principal curvatures “isoparametric hypersurface” . . “Gauss map” . G : N n ∋ p Lagr. imm. x ( p ) ∧ n ( p ) ∈ Q n ( C ) �− → N n − L n = G ( N n ) � N n / Z g ֒ → → Q n ( C ) Z g cpt. embedded minimal Lagr. submfd . . . Proposition . 2 n g is even (resp. odd) ⇐ ⇒ G ( N ) ⊂ Q n ( C ) is orientable (resp. non-orientable). . . 14 / 42

  15. Q n ( C ) � � Gr 2 ( R n + 2 ) � SO ( n + 2 ) / SO ( 2 ) × SO ( n ) . Suppose . → S n + 1 ( 1 ) ⊂ R n + 2 with constant principal curvatures N n ֒ “isoparametric hypersurface” . . “Gauss map” . G : N n ∋ p Lagr. imm. x ( p ) ∧ n ( p ) ∈ Q n ( C ) �− → N n − L n = G ( N n ) � N n / Z g ֒ → Q n ( C ) → Z g cpt. embedded minimal Lagr. submfd . . Proposition . g = 1 or 2 ⇔ G ( N ) ⊂ Q n ( C ) is totally geodesic (a real form). . 15 / 42

  16. Construction of isoparametric hypersurfaces: Principal orbits of the isotropy representations of Riemannian symmetric pairs ( U , K ) of rank 2 = ⇒ All homogeneous isopara. hypersurf. (Hsiang-Lawson, R. Takagi-T. Takahashi) Algebraic construction of Cartan-M¨ unzner polynomials by representations of Clifford algebras in case g = 4 (Ozeki-Takeuchi, Ferus-Karcher-M¨ unzner) OT-FKM type = ⇒ So many non-homogeneous isopara. hypersurf. Classification of isoparametric hypersurfaces: g = 1 : N n = S n , a great or small sphere; g = 2 : N n = S m 1 ( r 1 ) × S m 2 ( r 2 ) , ( n = m 1 + m 2 , 1 ≤ m 1 ≤ m 2 ≤ n − 1 , r 2 1 + r 2 2 = 1 ), Clifford hypersurfaces; g = 3 : N n is homog., N n = SO ( 3 ) SU ( 3 ) Sp ( 3 ) F 4 Z 2 + Z 2 , T 2 , Sp ( 1 ) 3 , Spin ( 8 ) (E. Cartan); g = 6 : N n is homog. m 1 = m 2 = 1 : homog. (Dorfmeister-Neher, R. Miyaoka) m 1 = m 2 = 2 : homog. (R. Miyaoka) g = 4 : N n is either homog. or OT-FKM type (Cecil-Chi-Jensen, Immervoll, Chi). 16 / 42

  17. . Two invariants of Lagrangian submanifolds . L : Lagr. submfd. of a sympl. mfd. ( M , ω ) Define two kinds of group homomorphisms I µ, L : π 2 ( M , L ) → Z and I ω, L : π 2 ( M , L ) → R . . 17 / 42

  18. . The invariant I µ, L . For a smooth map u : ( D 2 , ∂ D 2 ) → ( M , L ) with A = [ u ] ∈ π 2 ( M , L ) , choose a trivialization of the pull-back bdl. as a symplectic vect bdl. (which is unique up to the homotopy). u − 1 TM � D 2 × C n . This gives a smooth map u : S 1 = ∂ D 2 → Λ( C n ) . ˜ Here Λ( C n ) : Grassmann mfd. of Lagrangian vect. subsp. of C n . Using the Moslov class µ ∈ H 1 (Λ( C n ) , Z ) � Z , we define I µ, L ( A ) := µ (˜ u ) . . 18 / 42

  19. . The invariant I ω, L . Next, I ω, L : π 2 ( M , L ) → R is defined by ∫ D 2 u ∗ ω. I ω, L ( A ) := Note that I µ, L is invariant under symplectic diffeomorphisms I ω, L is invariant under Hamiltonian diffeomorphisms but not under symplectic diffeomorphisms. . 19 / 42

  20. . Monotonicity of Lagrangian submanifolds . A Lagr. submfd. L is monotone ⇐ ⇒ def I µ, L = λ I ω, L ( ∃ λ > 0 ) . Σ L ∈ Z + : a positive generator of Im ( I µ, L ) ⊂ Z as an additive subgroup Σ L : minimal Maslov number of L . . Theorem (K. Cieliebak and E. Goldstein 2004, Hajime Ono 2004) . ( M , ω, J , g ) : Einstein-K¨ ahler mfd. of Einstein const. κ > 0 L : compact minimal Lagr. submfd. of M = . ⇒ L is monotone. . 20 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend