isoparametric submanifolds admitting a reflective focal
play

Isoparametric submanifolds admitting a reflective focal submanifold - PowerPoint PPT Presentation

. Isoparametric submanifolds admitting a reflective focal submanifold in symmetirc spaces of non-compact type . Naoyuki Koike Tokyo University of Science koike@rs.kagu.tus.ac.jp Workshop on the Isoparametric Theory Beijing Normal University


  1. . Isoparametric submanifolds admitting a reflective focal submanifold in symmetirc spaces of non-compact type . Naoyuki Koike Tokyo University of Science koike@rs.kagu.tus.ac.jp Workshop on the Isoparametric Theory Beijing Normal University June 3, 2019

  2. Content 1. Introduction 2. Isoparametric submanifold and complex equifocal submanifold 3. ∞ -dimensional isoparametric submanifold submanifold 4. ∞ -dim. anti-Kaehler isoparametric submanifold 5. Outline of the proofs of results

  3. 1. Introduction

  4. Lift to Hilbert space � M := ( π ◦ φ ) − 1 ( M ) H 0 ([0 , 1] , g ) ⊂ φ lift G π M ⊂ G/K G/K : a simply connected symmetric space of compact type . Theorem A.1(Terng-Thorbergsson, 1995) . � M : equifocal ⇐ ⇒ M : isoparametric .

  5. Homogeneity of ∞ -dim. isoparametric submanifolds • In 1999, Heintze-Liu proved the homogeneity theorem for isoparametric submanifolds in a Hilbert space. • In 2002, Christ proved the homogeneity theorem for an equifocal submanifold M in G/K by applying Heintze-Liu’ theorem to � M = ( π ◦ φ ) − 1 ( M ) ⊂ H 0 ([0 , 1] , g ) . In the proof, he used the fact that � M is homogeneous by a Banach Lie group action. • In 2012, Gorodski-Heintze proved that the homogeneity in Heintze-Liu’s theorem means the homogeneity by a Banach Lie group action.

  6. Homogeneity of ∞ -dim. isoparametric submanifolds V : (seprable) Hilbert space M ( ⊂ V ) : complete proper Fredholm submanifold . Theorem A.2(Heintze-Liu, 1999) . M : full irreducible isoparametric submanifold of codim M ≥ 2 in V = ⇒ M : homogeneous (i.e., M = H · p ( ∃ H ⊂ I ( V ) )) . Remark H is given by H := { F ∈ I ( V ) | F ( M ) = M } . I ( V ) is not a Banach Lie group. Hence H also is not a Banach Lie group in general.

  7. A Banach Lie group of isometries  �  � ∃ { F t } t ∈ [0 , 1] : a one para transf . gr .    �      �   • F 1 = F �  I b ( V ) := F ∈ I ( V ) �  � s . t . • the Killing vec . fd . ass . to     �      � { F t } t ∈ [0 , 1] is defined on V V X u u I ( V ) X F I ( V ) id t �→ F t ( u ) t �→ F t X : the ass. vec. field of { F t } t ∈ [0 , 1]

  8. A Banach Lie group of isometries . Fact. . I b ( V ) is a Banach Lie group. . Proof ϕ : I b ( V ) − → o b ( V ) ⊕ V (Banach space) ( dA t � � ) � � , db t � � F �→ � � dt dt t =0 t =0 ( F t ( u ) = A t ( u ) + b t ( F 1 = F )) D := { ( L F ( U ) , ( ϕ ◦ L − 1 F ) | L F ( U ) ) } F ∈ I b ( V ) gives a Banach Lie group str. of I b ( V ) , where U is a suff. small nbd of id . � � � � X u = dA t u + db t � � ( u ∈ V ) Remark � � dt dt t =0 t =0

  9. An example of an element of I b ( V ) { } ∞ ∑ V := l ∞ = ( a i ) ∞ a 2 Example 1 i =1 | i < ∞ i =1 ( u ∈ V ) F t ( u ) := A t ( u ) + b t ( ( ) ) cos t − sin t ∞ k k A t = ⊕ sin t cos t k =1 k k Then the Killing vec. fd. X ass. to { F t } t is given by X u = B ( u ) + b ( u ∈ V ) ( ( ) ) − 1 0 ∞ k ⊕ B = 1 0 k =1 k Since B is bounded, X is defined on V . Hence we have F 1 ∈ I b ( V ) .

  10. An example of an element of I ( V ) \ I b ( V ) V := l ∞ Example 2 ( u ∈ V ) F t ( u ) := A t ( u ) + b t ( ( ) ) ∞ cos kt − sin kt A t = ⊕ sin kt cos kt k =1 Then the Killing vec. fd. X ass. to { F t } t is given by X u = Bu + b ( u ∈ V ) ( ( ) ) 0 − k ∞ B = ⊕ k 0 k =1 Since B is not bounded, X is not defined on V . Hence we have F 1 / ∈ I ( V ) \ I b ( V ) .

  11. An example of an element of I ( V ) \ I b ( V )   1   = (1 , 1 , 2 , 2 , 3 , 3 , · · · ) ∈ l ∞ [ ] u = i +1 2 ∈ l ∞ B ( u ) = ( − 1 , 1 , − 1 , 1 , − 1 , 1 , · · · ) / Hence X is not defined at u .

  12. Homogeneity of ∞ -dim. isoparametric submanifolds M ( ⊂ V ) : complete proper Fredholm submanifold . Theorem A.3(Gorodski-Heintze, 2012) . M : full irreducible isoparametric submanifold of codim M ≥ 2 in V = ⇒ M = H b · p ( ∃ H b ⊂ I b ( V ) ) . Remark H b = { F ∈ I b ( V ) | F ( M ) = M }

  13. Homogeneity of equifocal submanifolds G/K : simply connected symmetric space of compact type . Theorem A.4(Christ) . M : full irreducible equifocal submanifold of codim M ≥ 2 in G/K = ⇒ M : homogeneous (i.e., M = H · p ( ∃ H ⊂ I ( G/K ) )) .

  14. Complexification and Lift to ∞ -dim. anti-Kaheler space M C := ( π ◦ φ ) − 1 ( M C ) ⊂ H 0 ([0 , 1] , g C ) � φ G C lift π M C ⊂ G C /K C M ⊂ G/K extrinsic complexification G/K : symmetric space of non-compact type . Theorem B.1(K, 2005) . M : complex equifocal � M C : anti-Kaehler isoparametric ⇐ ⇒ .

  15. Homogeneity of ∞ -dim. anti-Kaehler isoparametric submanifolds V : ∞ -dim. anti-Kaehler space M ( ⊂ V ) : complete anti-Kaehler Fredholm submanifold . Theorem B.2(K,2014) . M : full irr. anti-Kaehler isoparametric submanifold of codim M ≥ 2 with J -diagonalizable shape op. in V = ⇒ M : homogeneous (i.e., M = H · p ( ∃ H ⊂ I ( V ) )) . Remark H is given by H := { F ∈ I ( V ) | F ( M ) = M } . I ( V ) is not a Banach Lie group. Hence H also is not a Banach Lie group in general.

  16. Homogeneity of ∞ -dim. anti-Kaehler isoparametric submanifolds  �  �  ∃ { F t } t ∈ [0 , 1] : a one para transf . gr .   �      �   • F 1 = F �  F ∈ I ( V ) I b ( V ) := �  � s . t .  • the hol . Killing v . fd . ass . to    �      � { F t } t ∈ [0 , 1] is defined on V . Theorem B.3(K,2017) . M : full irr. anti-Kaehler isoparametric submanifold of codim M ≥ 2 with J -diagonalizable shape op. in V = ⇒ M : homogeneous (i.e., M = H b · p ( ∃ H b ⊂ I b ( V ) )) . Remark H b = { F ∈ I b ( V ) | F ( M ) = M }

  17. Homogeneity of isoparametric submanifolds in sym. sp. of non-cpt type G/K : symmetric space of non-compact type ( ∗ C ) For any unit normal vec. v of M , the nullity spaces of the complex focal radii along the normal geodesic γ v span ( T p M ) C ∩ ((Ker A v ∩ Ker R ( v )) C ) ⊥ . . Theorem B.4(K,2018) . M : full irreducible curvature-adapted isoparametric C ω -submanifold of codim M ≥ 2 in G/K s.t. ( ∗ C ) ⇒ M : homogeneous (i.e., M = H · p ( ∃ H ⊂ I ( G/K ) )) = . ( M : curv.-adapted & ( ∗ C ) ⇒ � M C : has J -diag. shape op.)

  18. Homogeneity of isoparametric submanifolds in sym. sp. of non-cpt type . Theorem B.5(K,2018) . M : full irreducible isoparametric C ω -submanifold of codim M ≥ 2 in G/K admitting a reflective focal submanifold = ⇒ M : a principal orbit of a Hermann type action . Remark (i) Let H be a symmetric subgroup of G . Then the natural action of H on G/K is called a Hermann type action. (ii) Principal orbits of a Hermann type action are curvature-adapted isoparametric submanifolds.

  19. Homogeneity of isoparametric submanifolds in sym. sp. of non-cpt type . Question . Can we delete the assumption of the real anlayticity . of M in Theorem B.4? ( ∗ R ) For any unit normal vec. v of M , the nullity spaces of the focal radii along γ v span T p M . . Theorem B.6(K,2018) . M : full irreducible curvature-adapted isoparametric C ∞ -submanifold of codim M ≥ 3 in G/K s.t. ( ∗ R ) = ⇒ M : homogeneous (i.e., M = H · p ( ∃ H ⊂ I ( G/K ) )) ( M : a principal orbit of the isotropy action of G/K ) .

  20. Homogeneity of isoparametric submanifolds in sym. sp. of non-cpt type We proved this theorem by constructing a Tits building associtaed to M and using Burns-Spatzier’s theorem (1987).

  21. 2. Isoparametric submanifold and complex equifocal submanifold

  22. Equifocal submanifold G/K : symmetric space of compact type M ( ⊂ G/K ) : compact submanifold . Def(Equifocal submanifold) . M : equifocal submanifold   • M is a submanifold with flat section      • The normal holonomy gr. of M is trivial  ⇐ ⇒ • For each parallel normal vec. fd. � v ,  def   the focal radii along γ v p is independent     of p ∈ M .

  23. Isoparametric submanifold ( � M, � g ) : complete Riemannian manifold M ( ⊂ � M ) : complete submanifold . Def(Isoparametric submanifold in Heintze-Liu-Olmos-sense) . M : isoparametric submanifold with flat section  • M is a submanifold with flat section     • The normal holonomy gr. of M is trivial ⇐ ⇒  • Sufficciently close parallel submanifolds of M def    are of CMC w.r.t. the radial direction . In this talk, we call this submanifold “isoparametic submanifold” for simplicity.

  24. Isoparametric submanifold M v � η � v ( M ) the radial directions the section of M thr. p p

  25. Equifocality and isoparametricness . Proposition 2.1(Heintze-Liu-Olmos,2006). . Assume that M is compact. Then M : equifocal ⇐ ⇒ M : isoparametric .

  26. Complex focal radius G/K : symmetirc space of non-compact type G C /K C : the complexification of G/K M ( ⊂ G/K ) : C ω -submanifold in G/K M C ( ⊂ G C /K C ) : the complexification of M ( ⊂ G/K ) γ v : the normal geodesic of M of direction v ( ∈ T ⊥ p M ) ( � v � = 1 ) γ C v : the complexification of γ v

  27. Complex focal radius . Def(Complex focal radius) . √− 1 : complex focal radius along γ v z 0 = s 0 + t 0 γ C ( z 0 ) : a focal point of M C along s �→ γ C ( sz 0 ) ⇐ ⇒ . def

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend