l sweeps a scalable parallel high frequency helmholtz
play

L-sweeps: A scalable parallel high-frequency Helmholtz solver - PowerPoint PPT Presentation

L-sweeps: A scalable parallel high-frequency Helmholtz solver Russell J. Hewett *+ Matthias Taus # , Leonardo Zepeda-N nez % , Laurent Demanet # u Department of Mathematics, Virginia Tech SIAM CSE 2019, Spokane, WA February 28, 2019 *


  1. L-sweeps: A scalable parallel high-frequency Helmholtz solver Russell J. Hewett *+ Matthias Taus † # , Leonardo Zepeda-N´ nez % , Laurent Demanet # u˜ Department of Mathematics, Virginia Tech SIAM CSE 2019, Spokane, WA February 28, 2019 * Virginia Tech + Total SA † TU Wien # MIT RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 1 / 26 % UC Berkeley

  2. Motivation Wave propagation in geophysical applications 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Inhomogeneous media High frequency RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 2 / 26

  3. Model Problem − ∆ u − ω 2 mu = f in Ω + A.B.C. at ∂ Ω Ω ... Domain of interest m ... squared slowness ω ... frequency f ... sources RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 3 / 26

  4. Existing Fast Solution Techniques ◮ Classical iterative methods: n iter grows with ω RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 4 / 26

  5. Existing Fast Solution Techniques ◮ Classical iterative methods: n iter grows with ω ◮ Classical direct methods: 1D 2D 3D 3 O ( N 2 ) 2 ) operations O ( N ) O ( N 4 3 ) memory O ( N ) O ( N log N ) O ( N RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 4 / 26

  6. Existing Fast Solution Techniques ◮ Classical iterative methods: n iter grows with ω ◮ Classical direct methods: 1D 2D 3D 3 O ( N 2 ) 2 ) operations O ( N ) O ( N 4 3 ) memory O ( N ) O ( N log N ) O ( N ◮ Combination of iterative and direct methods RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 4 / 26

  7. Existing Fast Solution Techniques ◮ Classical iterative methods: n iter grows with ω ◮ Classical direct methods: 1D 2D 3D 3 O ( N 2 ) 2 ) operations O ( N ) O ( N 4 3 ) memory O ( N ) O ( N log N ) O ( N ◮ Combination of iterative and direct methods ⇒ Method of polarized traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 4 / 26

  8. Existing Fast Solution Techniques ◮ Classical iterative methods: n iter grows with ω ◮ Classical direct methods: 1D 2D 3D 3 O ( N 2 ) 2 ) operations O ( N ) O ( N 4 3 ) memory O ( N ) O ( N log N ) O ( N ◮ Combination of iterative and direct methods ⇒ Method of polarized traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 4 / 26

  9. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 5 / 26

  10. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 5 / 26

  11. Half-space Problem Polarization condition: � G ( x , y ) ∂ n y u ↑ ( y ) ds y 0 = − u Γ � Γ i,i +1 ∂ n y G ( x , y ) u ↑ ( y ) ds y f + Γ RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 6 / 26

  12. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  13. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  14. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  15. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  16. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  17. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  18. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  19. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  20. Method Of Polarized Traces RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 7 / 26

  21. Complexities Serial complexity: O ( N ) Question: Can we parallelize this preconditioner? Problem: Serial nature of the sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 8 / 26

  22. Solution: L-sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 9 / 26

  23. Solution: L-sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 9 / 26

  24. Solution: L-sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 9 / 26

  25. Solution: L-sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 9 / 26

  26. Solution: L-sweeps RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 9 / 26

  27. M O V I E! :) RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 10 / 26

  28. Observation Each propagation onto the next diagonal can is embarrassingly parallel on a cell-wise level! ⇒ O ( N / p ) complexity (as long as p = O ( N 1 / d )) RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 11 / 26

  29. Numerical Example: Complexity 0 . 6 0 . 55 0 . 5 0 . 45 0 . 4 Time [s] 0 . 35 0 . 3 0 . 25 0 . 2 0 . 15 0 . 1 0 . 05 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 N/p RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 12 / 26

  30. Numerical Example: Iteration Count 4 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 5 3 3 3 3 32 4 7 5 5 5 5 64 8 7 6 6 6 6 128 16 9 6 7 7 7 256 32 12 9 7 7 7 512 64 17 11 8 9 8 1024 128 29 14 11 9 9 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 13 / 26

  31. Numerical Example: Iteration Count 4 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 5 3 3 3 3 32 4 7 5 5 5 5 64 8 7 6 6 6 6 128 16 9 6 7 7 7 256 32 12 9 7 7 7 512 64 17 11 8 9 8 1024 128 29 14 11 9 9 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 13 / 26

  32. Numerical Example: Iteration Count 4 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 5 3 3 3 3 32 4 7 5 5 5 5 64 8 7 6 6 6 6 128 16 9 6 7 7 7 256 32 12 9 7 7 7 512 64 17 11 8 9 8 1024 128 29 14 11 9 9 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 13 / 26

  33. Numerical Example: Iteration Count 6 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 4 3 3 3 3 32 4 5 3 3 3 3 64 8 7 3 3 3 3 128 16 9 5 4 3 3 256 32 11 6 5 5 4 512 64 17 9 7 5 5 1024 128 32 11 8 7 6 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 14 / 26

  34. Numerical Example: Iteration Count 8 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 5 3 3 3 3 32 4 5 3 3 3 3 64 8 7 3 3 3 3 128 16 8 5 3 3 3 256 32 11 6 5 3 3 512 64 19 8 6 5 4 1024 128 - 11 9 7 5 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 15 / 26

  35. Numerical Example: BP Model Setup 0 0.1 0.2 0.3 ◮ Second order finite 0.4 difference 0.5 discretization 0.6 ◮ unit square 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 16 / 26

  36. Numerical Example: Iteration Count 4 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 9 7 6 6 6 32 4 12 7 7 7 7 64 8 14 9 10 10 10 128 16 16 12 12 12 12 256 32 25 25 23 22 23 512 64 30 26 26 26 26 1024 128 - 29 29 28 28 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 17 / 26

  37. Numerical Example: Iteration Count 6 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 9 6 6 6 6 32 4 11 7 7 7 7 64 8 13 9 8 8 8 128 16 16 11 11 11 11 256 32 24 18 18 19 18 512 64 - 25 25 24 24 1024 128 - 29 28 28 27 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 18 / 26

  38. Numerical Example: Iteration Count 8 points per wavelength Wavelengths in PML Wavelengths Number 1 1.5 2 2.5 3 in domain of cells 16 2 9 6 6 6 6 32 4 11 6 6 6 6 64 8 14 9 9 9 9 128 16 22 16 17 14 13 256 32 - 16 16 15 15 512 64 - 22 21 21 21 1024 128 - - 26 26 26 RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 19 / 26

  39. Numerical Example: High Frequency Solutions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ◮ max. 16 wavelengths in domain ◮ PML width: 1.25 wavelengths ◮ 2 × 2 domain decomposition RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 20 / 26

  40. Numerical Example: High Frequency Solutions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ◮ max. 32 wavelengths in domain ◮ PML width: 1.5 wavelengths ◮ 4 × 4 domain decomposition RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 21 / 26

  41. Numerical Example: High Frequency Solutions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ◮ max. 64 wavelengths in domain ◮ PML width: 1.75 wavelengths ◮ 8 × 8 domain decomposition RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 22 / 26

  42. Numerical Example: High Frequency Solutions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ◮ max. 128 wavelengths in domain ◮ PML width: 2.00 wavelengths ◮ 16 × 16 domain decomposition RJH (CSE 19) L-Sweeps for Helmholtz February 28, 2019 23 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend