l ecture 4 d ynamical s ystems 3
play

L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO - PowerPoint PPT Presentation

15-382 C OLLECTIVE I NTELLIGENCE S18 L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO EQUILIBRIUM A state " is said an equilibrium state of a dynamical system = () , if and only if "


  1. 15-382 C OLLECTIVE I NTELLIGENCE โ€“ S18 L ECTURE 4: D YNAMICAL S YSTEMS 3 I NSTRUCTOR : G IANNI A. D I C ARO

  2. EQUILIBRIUM A state ๐’š " is said an equilibrium state of a dynamical system ๐’šฬ‡ = ๐’ˆ(๐’š) , ยง if and only if ๐’š " = ๐’š ๐‘ข; ๐’š " ;๐’— ๐‘ข = 0 , โˆ€ ๐‘ข โ‰ฅ 0 ยง If a trajectory reaches an equilibrium state (and if no input is applied) the trajectory will stay at the equilibrium state forever: internal systemโ€™s dynamics doesnโ€™t move the system away from the equilibrium point, velocity is null : ๐’ˆ ๐’š " = 0 2

  3. I S THE EQUILIBRIUM STABLE ? When a displacement (a force) is applied to an equilibrium condition: Stable equilibrium Unstable equilibrium Neutral equilibrium Metastable equilibrium ยง Why are equilibrium properties so important? ยง For the same definition of an abstract model of a (complex) real-world scenario 3

  4. S ANDPILES , SNOW AVALANCHES AND META - STABILITY Abelian sandpile model (starting with one billion grains pile in the center) 4

  5. L YAPUNOUV VS . S TRUCTURAL EQUILIBRIUM ๐‘ž ๐‘ž ๐‘ž Structural equilibrium: is the ยง equilibrium persistent to (small) variations in the structure of the systems? ร  Sensitivity to the value of the parameters of the vector field ๐’ˆ Lyapunouv equilibrium: stability of ยง an equilibrium with respect to a small deviation from the equilibrium point 5

  6. I S THE EQUILIBRIUM (L YAPUNOUV ) STABLE ? An equilibrium state ๐’š " is said to be Lyapunouv stable if and only if ยง for any ฮต > 0, there exists a positive number ๐œ€ ๐œ such that the inequality ๐’š 0 โˆ’ ๐’š " โ‰ค ๐œ€ implies that ๐’š ๐‘ข; ๐’š 0 ,๐’— ๐‘ข = 0 โˆ’ ๐’š " โ‰ค ฮต โˆ€ ๐‘ข โ‰ฅ 0 ๐‘ข An equilibrium state ๐’š " is stable (in the Lyapunouv sense) if the response ยง following after starting at any initial state ๐’š 0 that is sufficiently near ๐’š " will not move the state far away from ๐’š " 6

  7. I S THE EQUILIBRIUM (L YAPUNOUV ) STABLE ? What is the difference between a stable and an asymptotically stable equilibrium? 7

  8. I S THE EQUILIBRIUM ASYMPTOTICALLY STABLE ? If an equilibrium state ๐’š " is Lyapunouv stable and every motion starting ยง sufficiently near to ๐’š " converges (goes back) to ๐’š " as ๐‘ข โ†’ โˆž , the equilibrium is said asymptotically stable ๐‘ข ๐œ,๐œ€ ๐œ โ†’ 0 as ๐‘ข โ†’ โˆž 8

  9. S OLUTION OF L INEAR ODE S The general form for an ODE: ๐’šฬ‡ = ๐’ˆ(๐’š) , where ๐’ˆ is a ๐‘œ -dim vector field ยง The general form for a linear ODE: ยง ๐’šฬ‡ = ๐ต๐’š, ๐’š โˆˆ โ„ < , ๐ต an ๐‘œร—๐‘œ coefficient matrix A solution is a differentiable function ๐’€ ๐‘ข ยง that satisfies the vector field ยง Theorem: Linear combination of solutions of a linear ODE If the vector functions ๐’š (@) and ๐’š (A) are solutions of the linear system ๐’šฬ‡ = ๐’ˆ(๐’š) , then the linear combination ๐‘‘ @ ๐’š (@) + ๐‘‘ A ๐’š (A) is also a solution for any real constants ๐‘‘ @ and ๐‘‘ A ยง Corollary: Any linear combination of solutions is a solution By repeatedly applying the result of the theorem, it can be seen that every finite linear combination ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ E ๐’š E (๐‘ข) of solutions ๐’š @ , ๐’š A ,โ€ฆ,๐’š E is itself a solution to ๐’šฬ‡ = ๐’ˆ(๐’š) 9

  10. F UNDAMENTAL AND G ENERAL S OLUTION OF L INEAR ODE S ยง Theorem: Linearly independent solutions If the vector functions ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent solutions of the ๐‘œ -dim linear system ๐’šฬ‡ = ๐’ˆ(๐’š) , then, each solution ๐’š(๐‘ข) can be expressed uniquely in the form: ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ < ๐’š < (๐‘ข) ยง Corollary: Fundamental and general solution of a linear system If solutions ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent (for each point in the time domain), they are fundamental solutions on the domain, and the general solution to a linear ๐’šฬ‡ = ๐’ˆ(๐’š) , is given by: ๐’š ๐‘ข = ๐‘‘ @ ๐’š @ (๐‘ข) + ๐‘‘ A ๐’š A (๐‘ข) + โ€ฆ๐‘‘ < ๐’š < (๐‘ข) 10

  11. G ENERAL SOLUTIONS FOR LINEAR ODE S Corollary: Non-null Wronskian as condition for linear independence ยง The proof of the theorem uses the fact that if ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent (on the domain), then det ๐’€ ๐‘ข โ‰  0 ๐‘ฆ @@ (๐‘ข) โ‹ฏ ๐‘ฆ @< (๐‘ข) โ‹ฎ โ‹ฑ โ‹ฎ ๐’€(๐‘ข) = Wronskian ๐‘ฆ <@ (๐‘ข) โ‹ฏ ๐‘ฆ << (๐‘ข) Therefore, ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are linearly independent if and only if W[๐’š @ , ๐’š A ,โ€ฆ, ๐’š < ](๐‘ข) โ‰  0 ยง Theorem: Use of the Wronskian to check fundamental solutions If ๐’š @ , ๐’š A ,โ€ฆ, ๐’š < are solutions, then the Wroskian is either identically to zero or else is never zero for all ๐‘ข ยง Corollary: To determine whether a given set of solutions are fundamental solutions it suffices to evaluate W[๐’š @ , ๐’š A ,โ€ฆ,๐’š < ](๐‘ข) at any point ๐‘ข 11

  12. S TABILITY OF L INEAR M ODELS ยง Letโ€™s start by studying stability in linear dynamical systems โ€ฆ The general form for a linear ODE: ยง ๐’šฬ‡ = ๐ต๐’š, ๐’š โˆˆ โ„ < , ๐ต an ๐‘œร—๐‘œ coefficient matrix Equilibrium points are the points of the Null space / Kernel of matrix ๐ต ยง ๐ต๐’š = ๐Ÿ, ๐‘œร—๐‘œ homogeneous system ยง Invertible Matrix Theorem, equivalent facts: ๐ต is invertible โŸท det ๐ต โ‰  0 ยง The only solution is the trivial solution, ๐’š = ๐Ÿ ยง Matrix ๐ต has full rank ยง < det ๐ต = โˆ ๐œ‡ U ยง , all eigenvalues are non null UV@ ยง โ€ฆ ยง In a linear dynamical system, solutions and stability of the origin depends on the eigenvalues (and eigenvectors) of the matrix ๐ต 12

  13. R ECAP ON E IGENVECTORS AND E IGENVALUES Geometry: Eigenvectors: Directions ๐’š that the linear transformation ๐ต ยง doesnโ€™t change. The eigenvalue ๐œ‡ is the scaling factor of the transformation ยง along ๐’š (the direction that stretches the most) Algebra: ยง Roots of the characteristic equation ๐‘„ ๐œ‡ = ๐œ‡๐‘ฑ โˆ’ ๐ต ๐’š = 0 โ†’ det ๐œ‡๐‘ฑ โˆ’ ๐ต = 0 ยง For 2ร—2 matrices: det ๐œ‡๐‘ฑ โˆ’ ๐ต = ๐œ‡ A โˆ’ ๐œ‡ tr ๐ต + det ๐ต ยง Algebraic multiplicity ๐’ : each eigenvalue can be repeated ๐‘œ โ‰ฅ 1 times ยง (e.g., (๐œ‡ โˆ’ 3) A , ๐‘œ = 2 ) Geometric multiplicity ๐’ : Each eigenvalue has at least one or ๐‘› โ‰ฅ 1 ยง eigenvectors, and only 1 โ‰ค ๐‘Ÿ โ‰ค ๐‘› can be linearly independent ยง An eigenvalue can be 0, as well as can be a real or a complex number 13

  14. R ECAP ON E IGENVECTORS AND E IGENVALUES 14

  15. L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, ๐‘ฆฬ‡ = ๐‘๐‘ฆ, solutions ยง were in the form: ๐‘ฆ ๐‘ข = ๐‘ฆ c ๐‘“ ef ยง The sign of a would affect stability and asymptotic behavior: x = 0 is an asymptotically stable solution if a < 0, while x = 0 is an unstable solution if a > 0, since other solutions depart from x = 0 in this case. Does a multi-dimensional generalization of the form ๐’š ๐‘ข = ๐’š c ๐‘“ ๐‘ฉf hold? ยง What about operator ๐‘ฉ ? ยง A two-dimensional example: ๐’š = ๐‘ฆ @ โˆ’4 โˆ’3 ๐‘ฆฬ‡ @ = โˆ’4๐‘ฆ @ โˆ’ 3๐‘ฆ A ๐ต = ๐’š (0) = (1,1) 2 3 ๐‘ฆฬ‡ A = 2๐‘ฆ @ + 3๐‘ฆ A ๐‘ฆ A Eigenvalues and Eigenvectors of ๐ต : ยง 1 3 ๐œ‡ @ = 2, ๐’— @ = ๐œ‡ A = โˆ’3, ๐’— A = โˆ’2 โˆ’1 (real, negative) (real, positive) 15

  16. S OLUTION ( EIGENVALUES , EIGENVECTORS ) The eigenvector equation: ๐ต๐’— = ๐œ‡๐’— ยง Letโ€™s set the solution to be ๐’š ๐‘ข = ๐‘“ hf ๐’— and letsโ€™ verify that it satisfies ยง the relation ๐’šฬ‡ ๐‘ข = ๐ต๐’š Multiplying by ๐ต : ๐ต๐’š(๐‘ข) = ๐‘“ hf ๐ต๐’— , but since ๐’— is an eigenvector: ยง ๐ต๐’š ๐‘ข = ๐‘“ hf ๐ต๐’— = ๐‘“ hf (๐œ‡๐’— ) ๐’— is a fixed vector, that doesnโ€™t depend on ๐‘ข โ†’ if we take ๐’š ๐‘ข = ๐‘“ hf ๐’— ยง and differentiate it: ๐’šฬ‡ ๐‘ข = ๐œ‡๐‘“ hf ๐’— , which is the same as ๐ต๐’š ๐‘ข above Each eigenvalue-eigenvector pair ( ๐œ‡ , ๐’— ) of ๐ต leads to a solution of ๐’šฬ‡ ๐‘ข = ๐ต๐’š , taking the form: ๐’š ๐‘ข = ๐‘“ hf ๐’— ยง The general solution to the linear ODE is obtained by the linear combination of the ๐’š ๐‘ข = ๐‘‘ @ ๐‘“ h i f ๐’— @ + ๐‘‘ A ๐‘“ h j f ๐’— A individual eigenvalue solutions (since ๐œ‡ @ โ‰  ๐œ‡ A, ๐’— ๐Ÿ and ๐’— ๐Ÿ‘ are linearly independent) 16

  17. S OLUTION ( EIGENVALUES , EIGENVECTORS ) ๐’š ๐‘ข = ๐‘‘ @ ๐‘“ h i f ๐’— @ + ๐‘‘ A ๐‘“ h j f ๐’— A ๐‘ฆ A ๐’š 0 = (1,1) (1,1) 1,1 = ๐‘‘ @ (1,โˆ’2) + ๐‘‘ A (3,โˆ’1) ๐’— ๐Ÿ‘ ร  ๐‘‘ @ = โˆ’4/5 ๐‘‘ A = 3/5 ๐‘ฆ @ ๐’— @ ๐’š ๐‘ข = โˆ’4/5๐‘“ Af ๐’— @ + 3/5๐‘“ opf ๐’— A ๐‘ฆ @ ๐‘ข = โˆ’ 4 5 ๐‘“ Af + 9 5 ๐‘“ opf ๐‘ฆ A ๐‘ข = 8 5 ๐‘“ Af โˆ’ 3 5 ๐‘“ opf Saddle equilibrium (unstable) Except for two solutions that approach the origin along the direction of the ยง eigenvector ๐’— A = (3 , - 1), solutions diverge toward โˆž , although not in finite time Solutions approach to the origin from different direction, to after diverge from it ยง 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend