l ecture 5 d ynamical s ystems 4
play

L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO - PowerPoint PPT Presentation

15-382 C OLLECTIVE I NTELLIGENCE S18 L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, = , solutions were in the


  1. 15-382 C OLLECTIVE I NTELLIGENCE – S18 L ECTURE 5: D YNAMICAL S YSTEMS 4 I NSTRUCTOR : G IANNI A. D I C ARO

  2. L INEAR M ULTI -D IMENSIONAL M ODELS For the case of linear (one dimensional) growth model, 𝑦̇ = 𝑏𝑦, solutions Β§ were in the form: 𝑦 𝑒 = 𝑦 4 𝑓 67 Β§ The sign of a would affect stability and asymptotic behavior: x = 0 is an asymptotically stable solution if a < 0, while x = 0 is an unstable solution if a > 0, since other solutions depart from x = 0 in this case. Does a multi-dimensional generalization of the form π’š 𝑒 = π’š 4 𝑓 𝑩7 hold? Β§ What about operator 𝑩 ? Β§ A two-dimensional example: π’š = 𝑦 $ βˆ’4 βˆ’3 𝑦̇ $ = βˆ’4𝑦 $ βˆ’ 3𝑦 ) 𝐡 = π’š (0) = (1,1) 2 3 𝑦̇ ) = 2𝑦 $ + 3𝑦 ) 𝑦 ) Eigenvalues and Eigenvectors of 𝐡 : Β§ 1 3 πœ‡ $ = 2, 𝒗 $ = πœ‡ ) = βˆ’3, 𝒗 ) = βˆ’2 βˆ’1 (real, negative) (real, positive) 2

  3. S OLUTION ( EIGENVALUES , EIGENVECTORS ) The eigenvector equation: 𝐡𝒗 = πœ‡π’— Β§ Let’s set the solution to be π’š 𝑒 = 𝑓 97 𝒗 and lets’ verify that it Β§ satisfies the relation π’šΜ‡ 𝑒 = π΅π’š Multiplying by 𝐡 : π΅π’š(𝑒) = 𝑓 97 𝐡𝒗 , but since 𝒗 is an eigenvector: Β§ π΅π’š 𝑒 = 𝑓 97 𝐡𝒗 = 𝑓 97 (πœ‡π’— ) 𝒗 is a fixed vector, that doesn’t depend on 𝑒 β†’ if we take π’š 𝑒 = 𝑓 97 𝒗 Β§ and differentiate it: π’šΜ‡ 𝑒 = πœ‡π‘“ 97 𝒗 , which is the same as π΅π’š 𝑒 above Each eigenvalue-eigenvector pair ( πœ‡ , 𝒗 ) of 𝐡 leads to a solution of π’šΜ‡ 𝑒 = π΅π’š , taking the form: π’š 𝑒 = 𝑓 97 𝒗 Β§ The general solution to the linear ODE is obtained by the linear combination of the π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) individual eigenvalue solutions (since πœ‡ $ β‰  πœ‡ ), 𝒗 𝟐 and 𝒗 πŸ‘ are linearly independent) 3

  4. S OLUTION ( EIGENVALUES , EIGENVECTORS ) π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) 𝑦 ) π’š 0 = (1,1) (1,1) 1,1 = 𝑑 $ (1,βˆ’2) + 𝑑 ) (3,βˆ’1) 𝒗 πŸ‘ Γ  𝑑 $ = βˆ’4/5 𝑑 ) = 3/5 𝑦 $ 𝒗 $ π’š 𝑒 = βˆ’4/5𝑓 )7 𝒗 $ + 3/5𝑓 FG7 𝒗 ) 𝑦 $ 𝑒 = βˆ’ 4 5 𝑓 )7 + 9 5 𝑓 FG7 𝑦 ) 𝑒 = 8 5 𝑓 )7 βˆ’ 3 5 𝑓 FG7 Saddle equilibrium (unstable) Except for two solutions that approach the origin along the direction of the Β§ eigenvector 𝒗 ) = (3 , - 1), solutions diverge toward ∞ , although not in finite time Solutions approach to the origin from different direction, to after diverge from it Β§ 4

  5. T WO REAL EIGENVALUES , OPPOSITE SIGNS Β§ The straight lines corresponding 𝑦 ) to 𝒗 $ and 𝒗 πŸ‘ are the trajectories corresponding to all multiples of (1,1) individual eigenvector solutions 𝐷𝑓 97 𝒗 : 𝒗 πŸ‘ 𝑦 $ 𝒗 $ 𝒗 $ : 𝑦 $ 𝑒 1 = 𝑑 $ 𝑓 )7 𝑦 ) 𝑒 βˆ’2 𝒗 ) : 𝑦 $ 𝑒 3 = 𝑑 ) 𝑓 FG7 𝑦 ) 𝑒 βˆ’1 Β§ The slope of a trajectory corresponding to one eigenvalue is constant in N ? O >? ( 𝑦 $ ,𝑦 ) ) Γ  It’s a line in the phase space (e.g., for 𝒗 $ : N > 𝑒 = O >> = βˆ’2 ) The eigenvectors corresponding to the same eigenvalue πœ‡ , together with Β§ the origin (0,0) (which is part of the solution for each individual eigenvalue), form a linear subspace , called the eigenspace of Ξ» The two straight lines are the two eigenspaces, that, as 𝑒 β†’ ∞, play the Β§ role of β€œseparators” for the different behaviors of the system 5

  6. T WO REAL EIGENVALUES , S AME S IGN π’š 𝑒 = 𝑑 $ 𝑓 9 > 7 𝒗 $ + 𝑑 ) 𝑓 9 ? 7 𝒗 ) 𝑦̇ $ = βˆ’2𝑦 $ 𝑦̇ ) = 𝑦 $ βˆ’ 4𝑦 ) Asymptotically Stable or unstable Β§ behavior depending on the sign of πœ‡ $) Node Trajectories either moving away from the Β§ equilibrium to infinite-distant away (when πœ‡ > 0), or moving directly toward, and converge to equilibrium (when πœ‡ < 0). The trajectories that are the eigenvectors Β§ move in straight lines. 6

  7. O NE REAL , REPEATED EIGENVALUE Β§ Case with two linearly independent eigenvectors π’š 𝑒 = 𝑓 9 > 7 (𝑑 $ 𝒗 $ + 𝑑 ) 𝒗 ) ) Β§ Every nonzero solution traces a straight-line trajectory: constant slope, direction given by the linear combination of the eigenvectors It is unstable if the eigenvalue is positive; asymptotically stable if the eigenvalue is negative. Focus Proper node (star point) 7

  8. O NE REAL , REPEATED EIGENVALUE Β§ Case with two linearly independent eigenvectors π’š 𝑒 = 𝑓 9 > 7 (𝑑 $ 𝒗 $ + 𝑑 ) 𝒗 ) ) 8

  9. O NE REAL , REPEATED EIGENVALUE Β§ Case with one linearly independent eigenvectors π’š 𝑒 = 𝑑 $ 𝒗 $ 𝑓 9 > 7 + 𝑑 ) (𝒗 $ 𝑒𝑓 9 > 7 + 𝒗𝑓 9 > 7 ) Positive eigenvalue 𝑦 ) One eigenvalue solution: 𝑓 9 > 7 𝒗 $ Β§ Β§ Need to find another solution, linearly independent From solutions of the form: 𝑒𝑓 9 > 7 𝒗 $ + 𝒗 𝑓 9 > 7 Β§ 𝑦 $ 𝒗 is a generalized eigenvector that can be Β§ determined from 𝐡 βˆ’ πœ‡ $ 𝐽 𝒗 $ = 𝒗 ~ (Node + Spiral) Repulsive focus (Improper node) All solutions except for the equilibrium diverge to infinity Negative eigenvalue 9

  10. I MAGINARY EIGENVALUES Β§ Roots of the characteristic equation are complex numbers: Ξ› Β± = πœ‡ Β± π‘—πœˆ S is also an eigenvalue. Β§ If Ξ› is a complex eigenvalue , then its conjugate Ξ› Β§ If 𝒗 is a complex eigenvector of Ξ›, then 𝒗 S , the complex conjugate of its S entries, is an eigenvector associated to Ξ› Β§ The solutions for the two conjugate eigenvalues: Β§ 𝑓 (9TUV)7 𝒗 = 𝑓 97 𝑓 UV7 𝒗 = 𝑓 97 (cosπœˆπ‘’ + 𝑗 sinπœˆπ‘’)𝒗 Β§ 𝑓 (9FUV)7 𝒗 S = 𝑓 97 𝑓 FUV7 𝒗 S = 𝑓 97 (cos πœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) 𝒗 S 𝒗 𝟐 𝒗 S 𝟐 Let 𝒗 = 𝒗 πŸ‘ , 𝒗 S = S πŸ‘ , 𝑣 $ = 𝛽 $ + 𝑗𝛾 $ , 𝑣 ) = 𝛽 ) + 𝑗𝛾 ) Β§ 𝒗 𝑓 (9TUV)7 𝑣 $ = 𝑓 97 (cosπœˆπ‘’ + 𝑗 sinπœˆπ‘’) (𝛽 $ + 𝑗𝛾 $ ) 𝑓 (9TUV)7 𝒗 = 𝑓 (9TUV)7 𝑣 ) = 𝑓 97 (cos πœˆπ‘’ + 𝑗 sinπœˆπ‘’) (𝛽 ) + 𝑗𝛾 ) ) 𝑓 (9FUV)7 𝑣 b $ = 𝑓 97 (cosπœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) (𝛽 $ βˆ’ 𝑗𝛾 $ ) 𝑓 (9FUV)7 𝒗 S = 𝑓 (9FUV)7 𝑣 b ) = 𝑓 97 (cos πœˆπ‘’ βˆ’ 𝑗 sinπœˆπ‘’) (𝛽 ) βˆ’ 𝑗𝛾 ) ) 10

  11. I MAGINARY EIGENVALUES 𝑓 97 [(𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’) + 𝑗(𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’)] 𝑓 (9TUV)7 𝒗 = 𝑓 97 [(𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’) + 𝑗(𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’)] 𝑓 97 [(𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’) βˆ’ 𝑗(𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’)] 𝑓 (9FUV)7 𝒗 S = v 𝑓 97 [(𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’) βˆ’ 𝑗(𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’)] 𝒁 ) = 𝑓 97 𝛾 $ cos πœˆπ‘’ + 𝛽 $ sinπœˆπ‘’ 𝒁 $ = 𝑓 97 𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’ 𝛾 ) cos πœˆπ‘’ + 𝛽 ) sinπœˆπ‘’ 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’ 𝑓 (9FUV)7 𝒗 S = 𝒁 $ βˆ’ 𝑗𝒁 ) 𝑓 (9TUV)7 𝒗 = 𝒁 $ + 𝑗𝒁 ) Since both sum and difference of 𝒁 $ and 𝒁 ) are solutions, also 𝒁 $ and 𝒁 ) Β§ are solutions; moreover, it can be proved that they are linearly independent π’š 𝑒 = 𝑑 $ 𝒁 $ + 𝑑 ) 𝒁 ) is a general solution (real, combining real solutions) 𝑦 $ 𝑒 = 𝑑 $ 𝑓 97 𝛽 $ cosπœˆπ‘’ βˆ’ 𝛾 $ sinπœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 $ cosπœˆπ‘’ + 𝛽 $ sinπœˆπ‘’ ) 𝑦 ) 𝑒 = 𝑑 $ 𝑓 97 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sinπœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 ) cosπœˆπ‘’ + 𝛽 ) sinπœˆπ‘’) 11

  12. (P URE ) I MAGINARY EIGENVALUES 𝑦̇ $ = 𝑦 ) π’š = 𝑦 $ 0 1 𝑦̇ ) = βˆ’π‘¦ $ 𝐡 = 𝑦 ) βˆ’1 0 Eigenvalues 𝐡 : Β§ 𝑦 ) Ξ› $ = 𝑗, Ξ› ) = βˆ’π‘— ( πœ‡ = 0, 𝜈 = 1) (pure imaginary, conjugate) Eigenvectors : Β§ 𝑦 $ 𝑗 𝒗 = 0 + 𝑗(βˆ’1) βˆ’π‘— 𝒗 S = = 1 1 + 𝑗(0) 1 𝛽 $ = 0, 𝛾 $ = βˆ’1,𝛽 ) = 1,𝛾 ) = 0 𝑦 $ 𝑒 = 𝑑 $ 𝑓 97 𝛽 $ cos πœˆπ‘’ βˆ’ 𝛾 $ sin πœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 $ cosπœˆπ‘’ + 𝛽 $ sin πœˆπ‘’ ) 𝑦 ) 𝑒 = 𝑑 $ 𝑓 97 𝛽 ) cosπœˆπ‘’ βˆ’ 𝛾 ) sin πœˆπ‘’ + 𝑑 ) 𝑓 97 (𝛾 ) cosπœˆπ‘’ + 𝛽 ) sin πœˆπ‘’) Center Β§ Periodic solutions General solutions: Β§ Some points initially move farther Β§ 𝑦 $ 𝑒 = 𝑑 $ sin𝑒 βˆ’ 𝑑 ) cos𝑒 away, but not too far away. 𝑦 ) 𝑒 = 𝑑 $ cos𝑒 βˆ’ 𝑑 sin𝑒 The origin is stable but not attracting. Β§ 12

  13. T HE TWO NEIGHBORHOODS OF LYAPUNOUV STABILITY πœ‡ Β± = ±𝑗 πœ‡ Β± = Β±3𝑗 𝑦 ) 𝑦 ) πœ€(𝜁) v v 𝑦 $ 𝜁 𝑦 $ Lyapunov stability needs two neighborhoods, 𝜁,πœ€(𝜁) : In order to have solutions Β§ stay within a neighborhood 𝜻 whose radius is the larger axis of an ellipse, initial conditions must be restricted to a neighborhood πœ€(𝜁) whose radius is no larger than the smaller axis of the solution If the neighborhood πœ€ 𝜁 is equal to the larger axis, then an initial point could be Β§ placed on another, larger orbit, that would not satisfy the requirement to stay within the original neighborhood 𝜁 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend