ke and entropy stable schemes for compressible flows
play

KE and entropy stable schemes for compressible flows Praveen. C - PowerPoint PPT Presentation

KE and entropy stable schemes for compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/ praveen Indo-German Conference


  1. KE and entropy stable schemes for compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/ praveen Indo-German Conference on Modeling, Simulation and Optimization 5-7 September, 2012 Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 1 / 39

  2. Outline 1 KE and entropy stable flux functions ◮ KEP and entropy conserving flux function ◮ Scalar and matrix dissipation ◮ Numerical examples Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 2 / 39

  3. Conservation laws: Navier-Stokes equation u = conserved variables ∂ u ∂ t + ∂ f ∂ x = ∂ g f = inviscid flux ∂ x g = viscous flux         ρ ρ ρ u m  =  ,  = p + ρ u 2 u = ρ u m f = p + um      E E ( E + p ) u ( E + p ) u   0 τ = 4 3 µ∂ u q = − κ∂ T  , g = τ ∂ x ,  ∂ x u τ − q µ = coeff. of dynamic viscosity , κ = coeff. of heat conduction γ − 1 + 1 p γ = C p 2 ρ u 2 , p = ρ RT , E = C v Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 3 / 39

  4. Finite volume method Ω j x = 0 x = 1 n 0 1 j − 1 j j + 1 n − 1 j − 1 / 2 j + 1 / 2 u j = Cell average value in j ’th cell Ω j = [ x j − 1 2 , x j + 1 2 ] Semi-discrete FVM ∆ x d u j d t + f j + 1 2 − f j − 1 2 = g j + 1 2 − g j − 1 2 Godunov scheme: exact or approximate Riemann solver f j + 1 2 = f ( u j , u j +1 ) Centered approximation for g j + 1 2 Locally and globally conserves mass, momentum and energy Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 4 / 39

  5. • Godunov/upwind schemes dissipate kinetic energy • Conservation alone does not guarantee numerical stability • Consistent evolution of kinetic energy: kinetic energy preserving (KEP) schemes • Entropy condition: second law of thermodynamics • Central schemes: stability via entropy condition and KEP • Kinetic energy preserving: Incompressible flows ◮ Harlow and Welch (1965): Staggered grids Ham (2002): Non-uniform grids Wesseling (1999): General structured grids Morinishi (1998): Fourth order scheme Verstappen et al. (2003): 2/4’th order symmetry preserving Mahesh et al. (2004): Unstructured grids ◮ Sanderse (2012): Energy conserving RK for INS Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 5 / 39

  6. • Kinetic energy preserving: Compressible flows ◮ Jameson (2008): KEP scheme for compressible flow ◮ Subbareddy et al. (2009): Fully discrete implicit KEP scheme ◮ Shoeybi et al. (2010): KEP scheme, unstructured, IMEX-RK ◮ Morinishi (2010): Skew symmetric, staggered grid schemes • Entropy consistent/stable schemes: not fully conservative ◮ Gerritsen et al. (1996): Entropy stable scheme for exponential entropy ◮ Honein et al. (2004): Better entropy consistency using skew-symmetric form, internal energy equation • Entropy consistent/stable schemes: fully conservative ◮ Tadmor (1987): Entropy conservative flux ◮ Lefloch et al. (2002): Higher order entropy conservative schemes ◮ Roe (2006): Explicit entropy conservative flux for Euler equations ◮ Fjordholm et al. (2011): Entropy stable ENO schemes Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 6 / 39

  7. Kinetic energy Kinetic energy per unit volume K = 1 2 ρ u 2 satisfies the following equation � ∂ u � 2 � � � � d p ∂ u ∂ x d x − 4 p ∂ u K d x = µ d x ≤ ∂ x d x d t 3 ∂ x Ω Ω Ω Ω Work done by pressure forces, absent in incompressible flows Irreversible destruction due to molecular diffusion Note: Convection contributes to only flux of KE across ∂ Ω Remark : Central average flux is not stable 2 = 1 f j + 1 2( f j + f j +1 ) Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 7 / 39

  8. KE preserving FVM ∂ K − 1 2 u 2 ∂ρ ∂ t + u ∂ ( ρ u ) = ∂ t ∂ t � ∂ u � 2 − ∂ ∂ x ( p + ρ u 2 / 2 − 4 3 µ∂ u ∂ x ) u + p ∂ u ∂ x − 4 = 3 µ ∂ x Centered numerical flux       f ρ f ρ 0 f m p + uf ρ 2 = = ˜ , g j + 1 2 = τ f j + 1       f e f e u τ − q ˜ j + 1 j + 1 j + 1 2 2 2 where 2 = 1 2 = 4 3 µ u j +1 − u j 2 = − κ T j +1 − T j u j + 1 2( u j + u j +1 ) , τ j + 1 , q j + 1 ∆ x ∆ x Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 8 / 39

  9. KE preserving FVM Discrete KE equation  � 2  �  ∆ u j + 1 ∆ u j + 1 ∆ x d K j 2 − 4 � �  ∆ x d t = 2 p j + 1 ˜ 3 µ 2 ∆ x ∆ x j j Jameson’s KEP flux   ρ u p + uf ρ f j + 1 2 =   Hf ρ j + 1 2 But there can be other choices, e.g., f ρ = ρ u , f e = ρ Hu , etc. p, f ρ , f e in any consistent manner. We We are free to choose ˜ determine all flux components (uniquely) from entropy condition. Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 9 / 39

  10. Entropy condition Entropy-Entropy flux pair: U ( u ) , F ( u ) U ( u ) is strictly convex and U ′ ( u ) f ′ ( u ) = F ′ ( u ) Then, for hyperbolic problem (Euler equation) ∂ u ∂ t + ∂ f U ′ ( u ) ∂ u ∂ t + U ′ ( u ) f ′ ( u ) ∂ u ∂ x = 0 = ⇒ ∂ x = 0 ⇓ ∂ U ( u ) + ∂ F ( u ) = 0 ∂ t ∂ x For discontinuous solutions, only inequality ∂ U ( u ) + ∂ F ( u ) ≤ 0 ∂ t ∂ x � Ω U ( u ) d x for an isolated system decreases with time Second law of thermodynamics Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 10 / 39

  11. Entropy conserving FVM Entropy variables v ( u ) = U ′ ( u ) U ( u ) is strictly convex = ⇒ u = u ( v ) Dual of the entropy flux F ( u ) ψ ( v ) = v · f ( u ( v )) − F ( u ( v )) Entropy conservative flux (Tadmor) ( v j +1 − v j ) · f j + 1 2 = ψ j +1 − ψ j � � ∆ x d u j ∆ x d U j v j · d t + f j + 1 2 − f j − 1 2 = 0 = ⇒ d t + F j + 1 2 − F j − 1 2 = 0 Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 11 / 39

  12. Entropy conserving FVM Consistent entropy flux F j + 1 2 = v j + 1 2 · f j + 1 2 − ψ j + 1 2 In the scalar case 2 = ψ j +1 − ψ j ( v j +1 − v j ) · f j + 1 2 = ψ j +1 − ψ j = ⇒ f j + 1 v j +1 − v j For systems, we have an under-determined problem. Entropy conservative flux of Tadmor (1987) � 1 f j + 1 2 = f ( v j + 1 2 ( θ )) d θ, v j + 1 2 ( θ ) = v j + θ ( v j +1 − v j ) 0 Cannot be explicitly evaluated, requires numerical quadrature Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 12 / 39

  13. Entropy condition for Euler equation Entropy-Entropy flux pair U = − ρ s F = − ρ us s = ln( p ) − ln( ρ γ ) + const. γ − 1 , γ − 1 , Entropy variables   γ − s γ − 1 − β u 2 1  , v = β = 2 RT , ψ = m = ρ u 2 β u  − 2 β Entropy conservative numerical flux for the Euler equations ( v j +1 − v j ) · f j + 1 2 = m j +1 − m j Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 13 / 39

  14. Roe’s entropy conservative flux Parameter vector and logarithmic average     z 1 1 � ρ ϕ r − ϕ l ∆ ϕ  =  , z = z 2 u ϕ ( ϕ l , ϕ r ) = ˆ =   p ln ϕ r − ln ϕ l ∆ ln ϕ z 3 p Entropy conserving numerical flux   ρ ˜ ˜ u f ∗ = uf ρ p 1 + ˜ ˜   ˜ Hf ρ where u = z 2 p 1 = z 3 p 2 = γ + 1 z 3 ˆ + γ − 1 z 3 ρ = z 1 ˆ ˜ z 3 , ˜ , ˜ , ˜ z 1 z 1 2 γ ˆ z 1 2 γ z 1 � 1 � γ ˜ a 2 p 2 γ − 1 + 1 ˜ 2 ˜ u 2 a = ˜ , H = 2 ˜ ρ ˜ Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 14 / 39

  15. New KEP and entropy conserving flux Jump in entropy variables in terms of ( ρ, u , β ) � � ∆ ρ 1 ∆ v 1 = ρ + − u 2 ∆ β − 2 u β ∆ u ( γ − 1)ˆ ˆ β ∆ v 2 = 2 β ∆ u + 2 u ∆ β ∆ v 3 = − 2∆ β Condition for entropy conservative flux: ∆ v · f = ∆( ρ u ) f ρ ∆ v 1 + f m ∆ v 2 + f e ∆ v 3 = ∆( ρ u ) = ρ ∆ u + u ∆ ρ KEP and Entropy conserving numerical flux   ρ u ˆ p = ρ f ∗ = p + uf ρ ˜    , ˜  � � 2 β f ρ + uf m 1 β − 1 2 u 2 2( γ − 1)ˆ Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 15 / 39

  16. Uniqueness of KEP/entropy conservative flux Independent variables: ( ρ, u , p ) ρ u ˆ f ρ = , Depends on γ !!! γ p ˆ ρ ( γ − 1) − ( γ − 1) ρ ˆ p Independent variables: ( β, u , p ) � � γ − 1 f e = f ρ + uf m , 2 u 2 Flux is not consistent !!! 2( γ − 1)ˆ β Conjecture There is a unique two point flux which is kinetic energy preserving, i.e., f m = ˜ p + uf ρ and entropy conservative. Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 16 / 39

  17. FVM for NS equation The semi-discrete finite volume method for NS equations using the centered KEP and entropy conservative flux is stable for the kinetic energy and entropy, i.e., � � 2 � � ∆ u j + 1 � ∆ u j + 1 � ∆ u j + 1 ∆ x d K j 2 − 4 � � � 2 2 2 d t = p j + 1 ˜ 3 µ ∆ x ≤ p j + 1 ˜ ∆ x ∆ x ∆ x ∆ x 2 j j j and � � 2 � � 2 � ∆ u j + 1 � ∆ T j + 1 8 µβ j + 1 ∆ x d U j κ � � d t = − 2 2 + 2 ∆ x ≤ 0 3 ∆ x RT j T j +1 ∆ x j j • Expect good stability property • No control of density/pressure Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 7 Sep 2012 17 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend