staggered schemes for compressible flows
play

Staggered schemes for compressible flows R. Herbin , with et , L. - PowerPoint PPT Presentation

Staggered schemes for compressible flows R. Herbin , with et , L. Gastaldo , W. Kheriji , J.-C. Latch e , T.T. Nguyen T. Gallou Universit e de Provence Institut de Radioprotection et de S


  1. Staggered schemes for compressible flows R. Herbin ⋆ , with et ⋆ , L. Gastaldo † , W. Kheriji ⋆ † , J.-C. Latch´ e † , T.T. Nguyen ⋆ † T. Gallou¨ ⋆ Universit´ e de Provence † Institut de Radioprotection et de Sˆ uret´ e Nucl´ eaire (IRSN)

  2. Context ⊲ General context: nuclear safety Examples: Accident in a nuclear reactor, fol- lowing loss of coolant. Interaction corium–concrete → two phase flow brèche circuit primaire Numerical simulation of compressible flows – cuve numerical code: ISIS, developed at IRSN coeur brèche cuve corium béton béton 1 à 4 m phase liquide mouvement de convection 6 m

  3. Context ⊲ General context: nuclear safety Examples: Accident in a nuclear reactor, fol- lowing loss of coolant. Interaction corium–concrete → two phase flow brèche circuit primaire Numerical simulation of compressible flows – cuve numerical code: ISIS, developed at IRSN coeur ⊲ Aim : obtain efficient schemes brèche cuve ◮ stable and precise for all Mach number corium ◮ sufficiently decoupled so that the béton numerical solution is not too difficult. � fractional time step methods. Classical for incompressible flows (pressure correction, Chorin 68, Temam 69), (Guermond béton 06) for a synthesis. 1 à 4 m phase liquide Also developed for compressible flows, mouvement with either colocated or staggered unknowns.. de convection 6 m

  4. Context ⊲ General context: nuclear safety Examples: Accident in a nuclear reactor, fol- lowing loss of coolant. Interaction corium–concrete → two phase flow brèche circuit primaire Numerical simulation of compressible flows – cuve numerical code: ISIS, developed at IRSN coeur ⊲ Aim : obtain efficient schemes brèche cuve ◮ stable and precise for all Mach number corium ◮ sufficiently decoupled so that the béton numerical solution is not too difficult. � fractional time step methods. Classical for incompressible flows (pressure correction, Chorin 68, Temam 69), (Guermond béton 06) for a synthesis. 1 à 4 m phase liquide Also developed for compressible flows, mouvement with either colocated or staggered unknowns.. de convection ⊲ Theoretical proof of stability and consis- tency, confirmed by numerical tests. 6 m

  5. The drift-diffusion model Drift-diffusion model for two phase flows � ∂ ρ � ∂ t + ∇ · ( ρ u ) = 0 (mass) � � � ∂ ρ y � � + ∇ · ( ρ y u ) = −∇ · ( ρ y (1 − y ) u r ) + ∇ · ( D ∇ y ) (ffl) � ∂ t � � ∂ρ u � + ∇ · ( ρ u ⊗ u ) + ∇ p − ∇ · τ ( u ) = 0 (mom) � ∂ t � � � p = Ψ( ρ, y ) Physical properties ◮ Positivity of the density ◮ Gas mass fraction between 0 and 1 ◮ Total mass conservation and fractional mass conservation ◮ Transport of an interface between phases with constant pressure and velocity ◮ Stability: control on the entropy.

  6. Staggered discretization ◮ Positivity of density � finite volume scheme on ρ : ρ piecewise constant on the cells.

  7. Staggered discretization ◮ Positivity of density � finite volume scheme on ρ : ρ piecewise constant on the cells. Primal mesh : M = { set of control volumes K , L , M ... } .

  8. Staggered discretization ◮ Positivity of density � finite volume scheme on ρ : ρ piecewise constant on the cells. Primal mesh : M = { set of control volumes K , L , M ... } . Scalar variables defined at cell centers: ( p K ) K ∈M , ( ̺ K ) K ∈M ,. . . ◮ Velocity components defined at the (or some of the) edges : ( v ( i ) σ ) σ ∈F ( i ) .

  9. Staggered discretization ◮ Positivity of density � finite volume scheme on ρ : ρ piecewise constant on the cells. Primal mesh : M = { set of control volumes K , L , M ... } . Scalar variables defined at cell centers: ( p K ) K ∈M , ( ̺ K ) K ∈M ,. . . ◮ Velocity components defined at the (or some of the) edges : ( v ( i ) σ ) σ ∈F ( i ) . Dual mesh(es) : M n = ( D ( i ) σ ) σ ∈F ( i ) .

  10. Staggered discretization ◮ Positivity of density � finite volume scheme on ρ : ρ piecewise constant on the cells. Primal mesh : M = { set of control volumes K , L , M ... } . Scalar variables defined at cell centers: ( p K ) K ∈M , ( ̺ K ) K ∈M ,. . . ◮ Velocity components defined at the (or some of the) edges : ( v ( i ) σ ) σ ∈F ( i ) . Dual mesh(es) : M n = ( D ( i ) σ ) σ ∈F ( i ) . Normal velocity to the face σ denoted by v σ · n σ . σ | | σ D σ = L K ǫ = D σ | D σ ′ | L = K | M ′ K σ D σ ′ M Figure: Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

  11. The MAC mesh : D σ (or K y : D σ (or K x 2 , j ) ) i − 1 i , j − 1 2 y j + 3 2 u y i , j + 1 2 y j + 1 u x 2 i − 1 2 , j +1 y j + 1 2 u y u y u y i − 1 , j − 1 i , j − 1 i +1 , j − 1 y j − 1 2 2 2 u x u x u x i − 3 i − 1 i + 1 2 , j 2 , j 2 , j 2 y j − 1 2 u y u x i , j − 3 y j − 3 i − 1 y j − 3 2 2 , j − 1 2 2 x i − 3 x i − 1 x i + 1 x i − 3 x i − 1 x i + 1 x i + 3 2 2 2 2 2 2 2 The dual mesh for the MAC scheme, x and y -component of the velocity.

  12. Finite volume discretization of the mass equation ∂ t ρ + div ( ρ u ) = 0 , (mass)

  13. Finite volume discretization of the mass equation ∂ t ρ + div ( ρ u ) = 0 , (mass) � (mass) � + implicit time discretization � ◮ K ρ n +1 − ρ n � � ( ρ n +1 u n +1 · n K ) = 0 . + δ t K ∂ K

  14. Finite volume discretization of the mass equation ∂ t ρ + div ( ρ u ) = 0 , (mass) � (mass) � + implicit time discretization � ◮ K ρ n +1 − ρ n � � ( ρ n +1 u n +1 · n K ) = 0 . + δ t K ∂ K ◮ discretization of the fluxes: | K | � ( ρ n +1 F n +1 − ρ n K ) + K ,σ = 0 , K δ t σ ∈E ( K ) ◮ F n +1 ρ n +1 u n +1 K ,σ = | σ | ˇ · n K ,σ , numerical flux through σ . σ σ upwind approximation of ρ n +1 at the face σ with respect to u n +1 ρ n +1 ◮ ˇ · n K ,σ . σ σ

  15. Finite volume discretization of the mass equation ∂ t ρ + div ( ρ u ) = 0 , (mass) � (mass) � + implicit time discretization � ◮ K ρ n +1 − ρ n � � ( ρ n +1 u n +1 · n K ) = 0 . + δ t K ∂ K ◮ discretization of the fluxes: | K | � ( ρ n +1 F n +1 − ρ n K ) + K ,σ = 0 , K δ t σ ∈E ( K ) ◮ F n +1 ρ n +1 u n +1 K ,σ = | σ | ˇ · n K ,σ , numerical flux through σ . σ σ upwind approximation of ρ n +1 at the face σ with respect to u n +1 ρ n +1 ◮ ˇ · n K ,σ . σ σ ◮ � Positive density: ρ n +1 > 0 if ( ρ n > 0 and ρ > 0 at inflow boundary).

  16. Discretization of the phase mass fraction balance ∂ t ρ y + div ( ρ u y ) = −∇ · ( ρ y (1 − y ) u r ) + ∇ · ( D ∇ y ) , (ff)

  17. Discretization of the phase mass fraction balance ∂ t ρ y + div ( ρ u y ) = −∇ · ( ρ y (1 − y ) u r ) + ∇ · ( D ∇ y ) , (ff) � (mass) � + implicit time discretization � ◮ K � ρ n +1 y n +1 − ρ n y n � ( ρ n +1 y n +1 u n +1 · n K ) = + δ t K ∂ K � � − ρ y (1 − y ) u r · n K ) + D ∇ y · n K . ∂ K ∂ K

  18. Discretization of the phase mass fraction balance ∂ t ρ y + div ( ρ u y ) = −∇ · ( ρ y (1 − y ) u r ) + ∇ · ( D ∇ y ) , (ff) � (mass) � + implicit time discretization � ◮ K � ρ n +1 y n +1 − ρ n y n � ( ρ n +1 y n +1 u n +1 · n K ) = + δ t K ∂ K � � − ρ y (1 − y ) u r · n K ) + D ∇ y · n K . ∂ K ∂ K ◮ discretization of the left hand side: | K | � ( ρ n + 1 y n +1 − ρ n K y n F n + 1 K ,σ y n +1 K ) + K σ K δ t σ ∈E ( K ) upwind approximation of y n +1 at the face σ with respect to F n +1 y n +1 K ,σ . σ � ◮ monotone numerical flux for ∂σ ρ y (1 − y ) u r · n K ) � ◮ two point flux approximation for ∂σ D ∇ y · n K .

  19. Discretization of the phase mass fraction balance ∂ t ρ y + div ( ρ u y ) = −∇ · ( ρ y (1 − y ) u r ) + ∇ · ( D ∇ y ) , (ff) � (mass) � + implicit time discretization � ◮ K � ρ n +1 y n +1 − ρ n y n � ( ρ n +1 y n +1 u n +1 · n K ) = + δ t K ∂ K � � − ρ y (1 − y ) u r · n K ) + D ∇ y · n K . ∂ K ∂ K ◮ discretization of the left hand side: | K | � ( ρ n + 1 y n +1 − ρ n K y n F n + 1 K ,σ y n +1 K ) + K σ K δ t σ ∈E ( K ) upwind approximation of y n +1 at the face σ with respect to F n +1 y n +1 K ,σ . σ � ◮ monotone numerical flux for ∂σ ρ y (1 − y ) u r · n K ) � ◮ two point flux approximation for ∂σ D ∇ y · n K . � : 0 < y n + 1 < 1 if (0 < y n < 1). Existence and uniqueness of the solution y n +1 for a given y n (Gastaldo-H.-Latch´ e 2009)

  20. FV-FE discretization of the momentum equation ∂ t ( ρ u ) + div ( ρ u ⊗ u ) + ∇ p − div ( τ ( u )) = 0

  21. FV-FE discretization of the momentum equation ∂ t ( ρ u ) + div ( ρ u ⊗ u ) + ∇ p − div ( τ ( u )) = 0 � (momentum) � + implicit time discretization � ◮ D σ ρ n +1 u n +1 − ρ n u n +1 � � ( ρ n +1 u n +1 ⊗ u n +1 · n K ) + δ t D σ ∂ D σ � ( ∇ p n +1 − div ( τ ( u n +1 ))) = 0 . + D σ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend