kai schneider
play

Kai Schneider M 2P2 -CNRS & CMI, Universit de Provence, - PowerPoint PPT Presentation

Fully adaptive multiresolution methods for evolutionary PDEs Kai Schneider M 2P2 -CNRS & CMI, Universit de Provence, Marseille, France Joint work with : Margarete Domingues , INPE, Brazil Sonia Gomes, Campinas, Brazil Olivier Roussel ,


  1. Fully adaptive multiresolution methods for evolutionary PDEs Kai Schneider M 2P2 -CNRS & CMI, Université de Provence, Marseille, France Joint work with : Margarete Domingues , INPE, Brazil Sonia Gomes, Campinas, Brazil Olivier Roussel , TCP, Unversit ä t Karlsruhe, Germany Workshop on Multiresolution and Adaptive Methods for Convection-Dominated Problems January 22-23 , 200 9 Laboratoire Jacques Louis Lions, Paris, France

  2. Outline � Motivation Introduction � Adaptivity in space and time � � Adaptive multiresolution method � Local time stepping / Controlled time stepping � Applications to reaction-diffusion equations � Applications to compressible Euler and Navier-Stokes � Conclusions and perspectives

  3. Motivation Context: Systems of nonlinear partial differential equations (PDEs) of hyperbolic or parabolic type. Turbulent reactive or non-reactive flows exhibit a multitude of active spatial and temporal scales. Scales are mostly not uniformly distributed in the space-time domain, Efficient numerical discretizations could take advantage of this property -> adaptivity in space and time Reduction of the computational complexity with respect to uniform discretizations while controlling the accuracy of the adaptive discretization. Here: adaptive multiresolution techniques

  4. Introduction - Multiresolution schemes (Harten 1995) o Solution on fine grid -> solution on coarse grid + details o Details “small” -> interpolation, no computation (CPU time reduced) o 2d non-linear hyperbolic problems (Bihari-Harten 1996, Abgrall-Harten 1996, Chiavassa-Do n at 2001, Dahmen et al. 2001, …) - Adaptive Multiresolution schemes (Müller 2001, Cohen et al. 2002, Roussel et al. 2003, Bürger et al. 2007, …) o Details “small” -> interpolation and remove from memory (CPU time and memory reduction) - Aim of this talk o fully adaptive schemes (space + time) for 2d and 3d problems o Compare with Adaptive Mesh Refinement (preliminary results)

  5. Adaptivity: space and time Numerical method: finite volume schemes Space adaptivity (MR) : Harten’s multiresolution (MR) for cell averages. Decay of the wavelet coeffcients to obtain information on local regularity of the solution. coarser grids in regions where coeffcients are small and the solution is smooth, while fine grids where coeffcients are significant and the solution has strong variations. Controlled Time Stepping (CTS) : The time integration with variable time steps, time step size selection is based on estimated local truncation errors. When the estimated local error is smaller than a given tolerance, the time step is increased to make the integration more effcient. Local time stepping (LTS) : Scale-dependent time steps. Different time steps, according to each cell scale: if ∆ t is used for the cells in the finest level, then a double time step 2 ∆ t is used in coarser level with double spacing. Required missing values in ghost cells are interpolated in intermediate time levels.

  6. ✁ ✎ ✏ ✒ ✎ ✏ ✒ ✑ ✏ ✒ ✎ ✏ ✑ ✒ ✏ ✎ ✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶ ✒ ✏ � ✔ ✗ ✟ ✝ ☞ ✄ ✆ ✂ ☞ ✝ ☞ ✎ ✓ ✖ ✒ ✏ ✕ ✑ ✏ ✕ ✑ ✏ ✑ ✔ ✶ ✘ ✏ ✆ ☛ ✄ ☛ ✍ ✄ ✆ ✠ ✡ ✠ ✆ ☞ ✂✆ ☎ ✂✄ ✁ � ✄ ✂ � ✁ ✄ ✖ ✪ ✍ ☞ ✂ ✪ ✂ ✆ ☞ ✞ ✍ ☛ ✍ ✒ ✌ ☞ ✠ ☛ ✒ ☎ ☛ � ✝✟✞ U l = ¯ ☛✌☞ � U l,i � Ω = (Ω l,i ) 0 ≤ i< 2 l 0 ≤ i< 2 l Ω l,i U l,i = ¯ | Ω l,i | 1 0 ≤ l ≤ L � Ω l,i U d V

  7. ✁ ✄ ✂ ☛ ✆ ✂ ✂ ✤ ☎ ✞ ✣ ✂ ✜ ✢ ✘ ☎ ✄ ✞ ✞ ✂ ✄ ✠ ☎ ✂ ☞ ✆ ✠ ✄ ✜ ✡ ✂ ✜ ☎ ☞ ☎ ✆ ✮ ✙ ☎ ✄ ✡ ✄ ✠ ✞ ✘ ✠ � ✛ ✄ ✂ ✠ ✞ ✄ ✄ ☎ ✞ ✁ ✆ ✂ ☞ ✂ ☞ ✝ ☎ ✂ ✜ ☎ ✍ ☎ ☎ ✂ ✰ ✯ ✂ ✣ ✰ ✱ ✮ ✍ ✭ ✦ ✘ ☛ ✛ ✄ ✂ ✠ ✞ ☎ ✕ ✭ ✆ ✎ ✏ ✩ ✱ ☛ ★ ✕ ✔ ✦ ✱ ✍ ✎ ☛ ✮ ✍ ✂ ✆ ✔ ✜ ✂ ✤ ✄ ☎ ✣ ✂ ☎ ✆ ✄ ☎ ✍ ✎ ✰ ✭ ✂ ☛ ☎ ✝ ✞ ☎ ☎ ✂ ☞ ✞ ✂ ✂ ✜ ☎ ☞ ✄ ✞ ✞ ✄ ☎ ✪ ✚ ✞ ✁ ✂ ✞ ✡ ✂ ☛ ☞ ✪ ✂ ✡ ✞ ✂ ✂ ✡ ☞ ✂✄ ✱ ✞ ✄ ✠ ☞ ✆ ✂✄ ☞ ☞ ✑ ☛ ✏ ✎ ☛ ✮ ✍ ✰ ✌ ☞ ✄ ☎ ☎ � ✂ ☞ ✠ ☎ ✂ ✁ � ✄ ✄ ✂ � ✁ ✄ � ✂ ✄ ✂ ✄ ✆ ✠ ☎ ✠ ✄ ✄ ✝ ✄ ✁ ✡ ✂ ✆ ☎ ✄ ✠ ☎ ✡ ☎ ✠ ✕ ☛ ✞ ☎ ✍ ✠ ✄ ☎ ✒ ✎ ✰ ✍ ✄ ✠ ✄ ✄ ✭ ☛ ✌ ✔ ✭ ✞ ✮ ✕ ✎ ☎ ✆ ☎ ✂ ☛ ✍ ☎ ✙ ✒ ✘ ✂ ✠ ✘ ✪ ✍ ✱ ✰ ✓ ✮ ✌ ✮ ✖ ✗ ✍ ☛ ✎ ✏ ✑ ✄ ☞ ✝ ☞ ✄ ✮ ✌ P l → l +1 D l,i = ¯ U ¯ U l,i − ˆ U ¯ U l,i P l → l − 1 P l → l +1 = P U l − 1 = P l → l − 1 ¯ ¯ M : ¯ N ¯ U l +1 = P l → l +1 ¯ ˆ ✂✠✟ U L �→ (¯ N − 1 P l → l − 1 U 0 , D 1 , . . . , D L ) U l ✥✧✦ U l U l ↔ (¯ ¯ U l − 1 , D l )

  8. ✄ ✄ ✂ ✁ ✆ ✂ ☎ ✆ ✂ ✆ ✄ ✂ ✆ ✆ ✂ ✝ ✄ ✂ ✆ ✂ ✆ ✄ � � � ✂ ✁ ✂ ✁ ✂ ✄ ☎ ☎ ✂ ☎ ✄ ✂ ✁ ✆ ✂ � ❂ ✺ ✼ ✏ ✹ ✸ ✻ ✽ ❀ ❀ ❁ ❁ ✺ ❀ ✹ ✺ ✼ ✹ ✺ ✞ ✂ ✆ ✂ ✟ ✆ ✂ ✠ ☎ ✁ ❁ ✏ ✷ ❈ ✰ ✺ ✼ ✏ � ✡ � � ✞ ☎ ✞ ✚ ✂✆ ✂ ✂ ✄ ✞ ☞ ☎ ☎ ✄ ✡ � ☞ ✛ ✆ ☞ ✁ � � ✂ ☞ ✁ ☎ ✡ ☞ ✂ ☎ ✄ ✂ ✂ ☞ ☎ ✆ ✄ � ☞ � ✠ ✆ ✂ ✄ ✜ ✂✄ ☞ ✜ ✢ ✄ ☛ ✂ � ✁ ✄ � � � � � ✂ ☎ ✛ ✠ ✞ ✂ ☎ ✚ ✂ ✂ ✂ | D l,i | < ǫ l ⇒ D l,i ¯ U l = (¯ u l,i ) 0 ≤ l ≤ L, i ∈ Λ l ☛✌☞ ❇ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❉ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❉ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❇ ✂ ❉ ✂ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❅ � ❅ � ❅ � ❅ � ❅ � ❅ � ❅ � ❅ � ❅ � ❍ ✟ ❍ ✟ ❍ ✟✟✟✟✟ ❍ ✟✟✟✟✟ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❳ ✘ ❳ ✘✘✘✘✘✘✘✘✘✘✘ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳

  9. ✄ ✙ ✌✗ ✞ ✞ ☛ ✂ ✝ ✻ ✡ ✍ ✥ ✕ ✜ ✥ ✴ ✴ ✥ ✢ ✚ ✳ ✛ ✝ ☛ ✷ ☛ ✌ ✍ ☞ ✌ ☞ ✎ ✝ ✠✡ ✏ ✑ ✖ ✒ ✂ ✓ ✡ ✝ ✆ ✔ ✝ ✕ ✓ ✤ ✍ ✆ ✗ ✝ ✌✗ ☞ ✏ ✜ ✔ ✏ ✖ ☛ ☛ ✏ ✞ ☞ ✠ ✄ ✓ ☛ ✂ ✝ ✢ ✛ ✌✚ ✳ ✥ ✜ ✚ ✤ ✥ ✷ ✜ ✗ ✚ ✴ ✘ ☛ ✳ ✴ ✥ ✣ ✛ ✧ ✞ ✝ ✌ ✙ ☛☞ ☞ ✠✡ ✂ ✄ ✆ ✝ ☞ ✂✄ ✄ ✠ ✁ ✂ ✁ ✂ ✡ ✠ ✂ ☞ ✟ ✂ ☎ ✄ ✣ ✂✄ ✡ ✜ ✄ ✡ � ✄ ✁ � ✂ ✄ � ✚ ✠ ✄ ☞ ☎ ✂ ☎ ✠ � ✞ ☎ ✠ ✄ ☎ ✄ ✞ ✂ ✞ ✁ ✷ ✌ ✥ ✚ ✗ ✂ ✮ ✴ ✣ ✝ ✞ ✚ ✭ ☎ ✖ ✳ ✴ ✥ ✣ ✛ ✷ ✧ ✆ ✝ ✳ ✚ ✚ ✗ ✠ ☎ ✙ ✄ ✟ ✣ ✢ ☎ ✍ ✄ ✷ ✘ ✥ ✷ ✚ • ✆✟✞ v, ρe ) t ∂ t U = D ( U ) U = ( ρ, ρ� D ( U ) = −∇ · ( f ( U ) + φ ( U, ∇ U )) + S ( U ) 2 nd • ∂ t ¯ U l,i = ¯ ∀ ( l, i ) ∈ Λ D l,i 1 � ¯ U l,i = U d V | Ω l,i | Ω l,i 1 � 1 � ¯ ( f ( U ) + φ ( U, ∇ U )) · n l,i ds + ¯ D l,i := D d V = − S i | Ω l,i | | Ω l,i | Ω l,i ∂ Ω l,i Ref. Roussel , Schneider , Tsigulin, Bockhorn . JCP 188 (200 3 )

  10. ✄ ✳ ☞ ✂ ✎ ✞ ☎ ☞ ✜ ✣ ✛ ✷ ✚ ✗ ✌ ✴ ☎ ✥ ✌ ✥ ✴ ✠ ✪ ☛ ✞ ✘ ☛ ✍ ☞ ☛ ✆ ✩ ✎ ☞ ✎ ☛ ☎ ☞ ✞ ✎ ☞ ✝ ✆ ✆ ☎ ✄ ✓ ✞ ✗ ✒ ✟ ✏ ✝ ✗ ✍ ✒ ✓ ☞ ✓ ✡ ✝ ✆ ✟ ✟ ✒ ☎ ✞ ☛ ✂ ✞ ✌ ✝ ☞ ☎ ✆ ✆ ✝ ☞ ✌ ☞ ✡ ☞ ✎ ✆ ✆ ✆ ☎ ☞ ☞ ✝ ✆ ✌ ✁ � ✪ ✓ ✆ ✂ ✌ ✑ ✞ ✄ ☞ ✝ ✆ ✂ ✄ ✓ ☞ ✖ ✡ ✖ ✡ ☛ ✌ ✠ ☛ ✆ ☛ ✠ ✛ ✝ ✗ ✍ ✠ ☛ ✟ ✂ ☞ ☛ ✂ ✄ ☞ ☎ ✄ ✓ ☎ ☞✎ ✓ ✆ ✍ ✝ ✠ ✌ ✏ ✞ ✣ ✛ ✚ ✢ ✣ ✗ ✚ ✙ ☞ ✌ ✚ ✆ ✩ ✥ ✠ � ✄ ✁ � ✂ ✄ � � ✂ ☛ ✄ ☞ ☎ ✆ ✜ ✆ ✁ ✖ ✌ ☛ ✔ ✖ ✝ ✠ ✙ ✡ ✙ ✚ ✷ ✍ ✳ ✡ ✝ ✆ ✪ ✩ ✝ ✂ ✍ ✟ ✆ ✂ ☞ ✠ ☛ ✒ ☞✎ ✗ ✗ ✠ ☎ ✄ ✞ ☛ ✍ ✍ ✒ ✓ ✝ ✚ ✤ ✞ ✂ ✝ ☞ ✍ ☞ ✄ ☞ ✝ ☞ ✄ ✆ ✤ ✤ ☛ ✁ ✍ ✎ ☛ ☛ ✗ ✡ ✠ • • • ✂☎✄ O ( N log N ) T ( ǫ ) U n +1 = ¯ ¯ E (∆ t ) M − 1 T ( ǫ ) ¯ N Ref. Roussel , Schneider , Tsigulin, Bockhorn . JCP 188 (200 3 ) M E (∆ t ) ¯ U n ⇒

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend