k2 19 the first k2 multi planetary system showing ttvs
play

K2 - 19 , THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana - PowerPoint PPT Presentation

K2 - 19 , THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana C.C. Barros Instituto de Astrofsica e Cincias do Espao, Porto , Portugal Formerly @ Laboratoire dAstrophysique de Marseille, France Collaborators: Almenara, J.M.;


  1. K2 - 19 , THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana C.C. Barros Instituto de Astrofísica e Ciências do Espaço, Porto , Portugal Formerly @ Laboratoire d’Astrophysique de Marseille, France Collaborators: Almenara, J.M.; Demangeon, O.; Tsantaki, M.; Santerne, A.; Armstrong, D.; Barrado, D.; Brown, D.; Deleuil, M.; Lillo, J.; Osborn, H.; Pollacco, D.; Abe, L.; Andre, P.; Bendjoya, P.; Boisse, I.; Bonomo, A.; Bouchy, F.; Bruno, G.; Rey Cerda, J.; Courcoul, B.; Díaz, R.; Hebrard, G; Kirk, J.; Lachurie, J.; Lam, K.; Martinez, P.; McCormac, J.; Moutou, C.; Rajpurohit, A.; Rivet, J.-P.; Spake, J.; Suárez, O.; Toublanc, D.; Walker, S.

  2. 2 6 October 2015 Susana Barros Outline • K2-19 discovery summary • Describe photodynamic model • Despite the short duration of K2 we can detect TTVs and constrain the masses of the both planets • Astro-ph: 1510.0147 TTV analysis didn’t die with Kepler

  3. 3 6 October 2015 Susana Barros K2-19b & c (EPIC 201505350) P b ~ 8 days, R b = 7.23+/-0.6 R earth P c ~ 12 days R c = 4.21+/-0.31 R earth • Discovered in K2 - Campaign 1 with duration ~ 75 days • Close to 3:2 mean motion resonance • Validated with PASTIS à 99.2% probability for the planetary system Armstrong et al. 2015

  4. 4 6 October 2015 Susana Barros Near mean motion resonance Closeness to resonance à TTVs expected Follow-up transit larger inner planet b ~200 days after K2 C1 duration ~75 days Planet b Constrain the masses: M b < 245 M Earth , M c < 280 M Earth Armstrong et al. 2015/arXiv:1503.00692

  5. 5 6 October 2015 Susana Barros Near resonant systems - Amplitude of the TTV curve is proportional to the dynamic masses and eccentricity (Holman et al 2005, Agol 2005, Lithwick et al. 2012) - The libration period is inversely proportional to the distance to the resonance. - K2-19 is one of the closest systems to 3:2 MMR à long libration period > 1.5 years not detectable in the duration our observations Adapted from Lithwick et al. 2012

  6. 6 6 October 2015 Susana Barros Chopping short period TTVs • TTVs short-timescale component “chopping” at synodic timescale (Nesvorny ́ & Beauge ́ 2010; Nesvorny ́ & Vokrouhlicky ́ 2014; Deck & Agol 2015). • Proportional to mass ratios, lifts degeneracy à uniquely estimate the planetary masses. KOI-142 (Kepler-88) Nesvorny et al 2013 later confirmed Barros et al 2014

  7. 7 6 October 2015 Susana Barros Standard TTV: fit transit times à TTVs à system dynamics Photodynamical model Mercury N-body Transit/RV MCMC model Likehood masses and radius of all bodies + planetary orbital parameters at reference time Almenara, J. M. et al. 2015, MNRAS, 453, 2644

  8. 8 6 October 2015 Susana Barros Advantages • Fully consistent analysis • Exploit all photometric measurements (e.g. TTVs, TDVs) • Doppler detection + light curve à Absolute masses • Dynamics helps constrain the TTVs and TDVs à Higher precision in system parameters (Almenara et al. 2015) • Less sensitive to systematics Derived from the model gravitationally assisted Disadvantage • Long computation time

  9. 9 6 October 2015 Susana Barros LAM K2 pipeline • Based on CoRoT imagette pipeline (Barros et al. 2014) • Optimised aperture to maximise S/N (e.g. Adda et al. 2000) • Self-flat field correction method (Vanderburg & Jonhson 2014) 1.005 1.005 Normalised flux 1.000 1.000 0.995 0.995 0.990 0.990 0 0 20 20 40 40 60 60 80 80 Time − 2456810. Barros et al in prep

  10. 10 6 October 2015 Susana Barros K2 detrending – Campaign 1 10 6 raw corrected white noise level 10 5 10 4 rms (ppm) 10 3 10 2 10 1 8 10 12 14 16 18 mag For more information about the K2 pipeline please see the poster 4

  11. 11 6 October 2015 Susana Barros Transit fitting K2 1 . 002 1 . 000 Rel. flux 0 . 998 0 1 2 0 . 996 0 . 994 0 1 2 3 4 0 . 992 500 O-C [ppm] 250 0 − 250 − 500 13.2 13.35 13.5 17.1 17.25 17.4 21.15 21.3 21.45 29.1 29.25 29.4 37.05 37.2 37.35 40.95 41.1 41.25 44.85 45.0 45.15 45.3 1 . 002 1 . 000 Rel. flux 0 . 998 3 5 6 4 0 . 996 0 . 994 5 6 7 8 9 0 . 992 500 O-C [ppm] 250 0 − 250 − 500 52.8 52.95 53.1 60.75 60.9 61.05 64.8 64.95 65.1 68.7 68.85 69.0 76.65 76.8 76.95 84.6 84.75 84.9 88.65 88.8 88.95 BJD - 2,456,800 Planet b Planet c

  12. 12 6 October 2015 Susana Barros Follow–up transit observations • Epoch 34 - 40 cm NITES telescope La Palma • Epoch 35 - 1m C2PU/Omicron at Calerm, France • Epoch 36 - Belesta 82-cm, France 1.01 Rel. flux 1.0 34 35 36 0.99 0 . 01 O-C 0 . 00 − 0 . 01 7082 . 55 7082 . 70 7082 . 85 7090 . 50 7090 . 65 7090 . 80 7098.45 7098.6 7098.75 BJD - 2,450,000 Planet b

  13. 13 6 October 2015 Susana Barros Spectroscopic observations • 10 observations with SOPHIE at 1.93m OHP (France) 7 . 32 7 . 30 Radial Velocity [km s − 1 ] • Doppler signature not 7 . 28 7 . 26 detected 7 . 24 • Require stellar priors 7 . 22 7 . 20 from stellar models 7 . 18 7 . 16 O-C [m s − 1 ] 50 0 − 50 7040 7050 7060 7070 7080 7090 7100 7110 7120 7130 7140 BJD - 2,450,000 • Spectral analysis, late G dwarf: Teff = 5390 +/- 180K, logg=4.42 +/- 0.34dex, Fe/H=0.19 +/- 0.12dex M * = 0.92 +/- 0.08 M Sun , R * = 0.93 +/- 0.20 R Sun

  14. 14 6 October 2015 Susana Barros Results Dynamically constrained – independent from stellar parameters

  15. 15 6 October 2015 Susana Barros Planetary composition M-R models for planets with H/He envelopes for different metal enrichment Z (Barraffe et al 2008) M-R models for solid planets (Zeng et al 2013) M b = 44 +/- 12 M c = 15.9 +/- 7.0

  16. 16 6 October 2015 Susana Barros Planet b 60 40 20 TTV [min] 0 − 20 − 40 − 60 Planet c 200 150 100 TTV [min] 50 0 − 50 − 100 − 150 − 200 6800 6900 7000 7100 7200 7300 7400 BJD - 2,450,000

  17. 17 6 October 2015 Susana Barros Compare with traditional TTV Planet b 15 10 TTV [min] 5 0 − 5 − 10 − 15 Values agree Double uncertainties Planet c 15 10 TTV [min] 5 0 − 5 − 10 − 15 6800 6850 6900 6950 7000 7050 7100 BJD - 2,450,000

  18. 18 6 October 2015 Susana Barros K2 data only: chopping is detected! Planet b 2 1 TTV [min] 0 − 1 − 2 = 0.474 +/-0.16 6 Planet c 5 4 3 2 TTV [min] 1 = 0.000142+/-0.000038 0 − 1 − 2 − 3 − 4 − 5 − 6 6810 6820 6830 6840 6850 6860 6870 6880 6890 BJD - 2,450,000

  19. 19 6 October 2015 Susana Barros Take home messages • The planets have significant gaseous envelopes and K2-19c has higher metal enrichment than K2-19b. • A photodynamical model leads to a better constrain on the system parameters. • Detecting short period TTVs (chopping) in K2-19 allows to constrain the system without long time coverage. Powerful tool for K2, CHEOPS, TESS … Thanks

  20. 20 6 October 2015 Susana Barros Narita et al. • AO imaging à no contaminant • High resolution spectroscopy Teff = 5345 +/- 17K, logg=4.39 +/- 0.05dex, Fe/H=0.07 +/- 0.03dex M * = 0.902 +/- 0.01 M Sun , R * = 0.914 +/- 0.03 R sun • Fit light curve to derive TTVs • Use synodic chopping formula Deck and Agol 2015 applied to planet b TTVs à M c = 21.4 +/- 1.9 assuming circular and coplanar orbits

  21. 21 6 October 2015 Susana Barros Dynamic parameters 4 . 0 14000 run10 run10 run12 run12 3 . 5 12000 run13 run13 run14 run14 3 . 0 10000 2 . 5 8000 PDF PDF 2 . 0 6000 1 . 5 4000 1 . 0 2000 0 . 5 0 0 . 0000 0 . 0001 0 . 0002 0 . 0003 0 . 0004 0 . 0005 0 . 0006 0 . 0 PlanetHost1 q+ 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 PlanetHost1 qp K2 K2 + RV + transits K2 + RV + STAR K2 + RV + transits + STAR

  22. 22 6 October 2015 Susana Barros KeplerLC jitter 1.15 1.05 0.95 Planet b Rp/R ? 0.078 0.076 0.074 Planet b ! 262.5 175.0 87.5 i Planet b 89.1 88.2 87.4 Planet b M 300.0 200.0 100.0 Planet b Mp 0.27 0.2 0.12 Planet b a 0.082 0.077 0.073 Planet b e 0.26 0.18 0.09 Planet c Rp/R ? 0.0475 0.046 0.0445 Planet c ! 300.0 200.0 100.0 Planet c i 91.5 90.0 88.5 Planet c M 300.0 200.0 100.0 Planet c Mp 0.11 0.07 0.04 Planet c a 0.109 0.103 0.096 Planet c e 0.26 0.18 0.09 Planet c n 186.2 177.5 168.8 SOPHIE jitter 2.4 1.8 1.1 7.25 Star � 0 7.23 7.21 1.15 Star M ? 1.0 0.85 1.15 Star R ? 1.0 0.85 0.5 Star ua 0.45 0.4 0.24 Star ub 0.19 0.15 0.999993 1.000015 1.000038 0.95 1.05 1.15 0.074 0.076 0.078 87.5 175.0 262.5 87.4 88.2 89.1 100.0 200.0 300.0 0.12 0.2 0.27 0.073 0.077 0.082 0.09 0.18 0.26 0.0445 0.046 0.0475 100.0 200.0 300.0 88.5 90.0 91.5 100.0 200.0 300.0 0.04 0.07 0.11 0.096 0.103 0.109 0.09 0.18 0.26 168.8 177.5 186.2 1.1 1.8 2.4 7.21 7.23 7.25 0.85 1.0 1.15 0.85 1.0 1.15 0.4 0.45 0.5 SOPHIE KeplerLC Planet b Planet b Planet b Planet c Planet c Planet c Star Star Star Star jitter Planet b Planet b Planet b Planet b Planet c Planet c Planet c Planet c i i jitter Mp e Planet c Mp e � 0 M ? R ? ua Rp/R ? M a M a n ! ! KeplerLC Rp/R ? foot

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend