joint state and parameter estimation with an iterative
play

Joint state and parameter estimation with an iterative ensemble - PowerPoint PPT Presentation

Joint state and parameter estimation with an iterative ensemble Kalman smoother Marc Bocquet 1 , 2 , Pavel Sakov 3 1 Universit e Paris-Est, CEREA, joint lab Ecole des Ponts ParisTech and EdF R&D, France 2 INRIA, Paris-Rocquencourt


  1. Joint state and parameter estimation with an iterative ensemble Kalman smoother Marc Bocquet 1 , 2 , Pavel Sakov 3 1 Universit´ e Paris-Est, CEREA, joint lab ´ Ecole des Ponts ParisTech and EdF R&D, France 2 INRIA, Paris-Rocquencourt Research center, France 3 Bureau of Meteorology, Australia (bocquet@cerea.enpc.fr) 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 1 / 22

  2. Context ◮ New methods called ensemble variational methods that mix variational and ensemble approaches (see Lorenc, 2013 for an almost perfect definition): Hybrid methods, 4D-Var-Ben, 4D-En-Var, Ensemble of data assimilation (EDA) and IEnKF/IEnKS. Lorenc A. 2013. Recommended nomenclature for EnVar data assimilation methods. In Research Activities in Atmospheric and Oceanic Modelling , WGNE. ◮ The IEnKF/IEnKS differ from the other ones in that they are more natural (simple?), regardless of the numerical cost. ◮ The IEnKS has a great potential for parameter estimation, as it is variational but avoids the derivation of the adjoint. 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 2 / 22

  3. Context The IEnKS: at the crossroad between the EnKF and 4D-Var ◮ The IEnKS follows the scheme of the EnKF: Analysis in ensemble space → Posterior ensemble generation → Ensemble forecast ◮ Except that The analysis in ensemble space is variational [e.g. Zupanski, 2005] over a finite time windows. It may require several iterations in strongly nonlinear conditions [Gu & Oliver, 2007; Sakov et al., 2012; Bocquet and Sakov, 2012-2014] . The gradient of the 4D cost function is computed with the ensemble [Gu & Oliver, 2007;Liu et al., 2008] : no need for the tangent linear/adjoint. ◮ It generalises the iterative extended Kalman filter/smoother [Wishner et al., 1969; Jazwinski, 1970; Bell, 1994] to ensemble methods. ◮ It is a unified/straightforward scheme (no hybridization so to speak). 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 3 / 22

  4. The iterative ensemble Kalman smoother The IEnKS: the cycling ◮ L : length of the data assimilation window, ◮ S : shift of the data assimilation window in between two updates. y y L−3 L−2 t L−1 t t L−3 L−2 y L y L−1 S ∆ t t L t t t t L−1 0 1 L y y L+1 L+2 S ∆ t t L+1 t t L+1 L+2 L ∆ t 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 4 / 22

  5. The iterative ensemble Kalman smoother The IEnKS: a variational standpoint ◮ Analysis IEnKS cost function in state space p ( x 0 | y L ) ∝ exp( − J ( x 0 )): L 1 2 ( y k − H k ◦ M k ← 0 ( x 0 )) T β k R − 1 ∑ J ( x 0 ) = k ( y k − H k ◦ M k ← 0 ( x 0 )) k =1 + 1 2 ( x 0 − x 0 ) P − 1 0 ( x 0 − x 0 ) . (1) { β 0 , β 1 ,..., β L } weight the observations impact within the window. ◮ Reduced scheme in ensemble space, x 0 = x 0 + A 0 w , where A 0 is the ensemble anomaly matrix: � J ( w ) = J ( x 0 + A 0 w ) . (2) ◮ IEnKS cost function in ensemble space [Hunt et al., 2007; Bocquet and Sakov, 2012] : L J ( w ) =1 ( y k − H k ◦ M k ← 0 ( x 0 + A 0 w )) T β k R − 1 � ∑ k ( y k − H k ◦ M k ← 0 ( x 0 + A 0 w )) 2 k =1 + 1 2( N − 1) w T w . (3) 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 5 / 22

  6. The iterative ensemble Kalman smoother The IEnKS: minimisation scheme ◮ As a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012] , Levenberg-Marquardt [Bocquet and Sakov, 2012; Chen and Oliver, 2013] , quasi-Newton, etc., minimisation schemes. ◮ Gauss-Newton scheme (the Hessian is approximate): w ( p +1) = w ( p ) − � H − 1 ( p ) ∇ � J ( p ) ( w ( p ) ) , + A 0 w ( p ) , x ( p ) = x (0) 0 0 � � L y k − H k ◦ M k ← 0 ( x ( p ) +( N − 1) w ( p ) , ∇ � k , ( p ) β k R − 1 ∑ Y T J ( p ) = − 0 ) k k =1 L � k , ( p ) β k R − 1 ∑ Y T H ( p ) = ( N − 1) I N + L Y ( p ) , k =1 Y k , ( p ) = [ H k ◦ M k ← 0 ] ′ 0 A 0 . (4) | x ( p ) ◮ One solution to compute the 4D sensitivities: the bundle scheme. It simply mimics the action of the tangent linear by finite difference: �� � � I N − 11 T Y k , ( p ) ≈ 1 x ( p ) 1 T + ε A 0 ε H k ◦ M k ← 0 . (5) N 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 6 / 22

  7. The iterative ensemble Kalman smoother The IEnKS: ensemble update and the forecast step ◮ Generate an updated ensemble from the previous analysis: √ 0 1 T + H − 1 / 2 E ⋆ 0 = x ⋆ N − 1 A 0 � where U1 = 1 . (6) U ⋆ ◮ Just propagate the updated ensemble from t 0 to t S : E S = M S ← 0 ( E 0 ) . (7) In the quasi-static case: S = 1. 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 7 / 22

  8. The iterative ensemble Kalman smoother IEnKS: single vs multiple data assimilation β β β L−1 L 0 y y y L−3 L−2 −2 t L−1 t t L−3 L−2 β β β 0 L−1 L y L y y L−1 S ∆ t 0 t L t t t t L−1 0 1 L β β L−1 L β y y 0 y L+1 L+2 S ∆ t 2 t L+1 t t L+1 L+2 L ∆ t ◮ SDA IEnKS: The observation vector are assimilated once and for all. Exact scheme. ◮ MDA IEnKS: The observation vector are assimilated several times and poundered with weights β k within the window. Exact scheme in the linear/Gaussian limit. More stable for long windows than the SDA scheme. 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 8 / 22

  9. Numerical experiments Application to the Lorenz-95 model ◮ Weakly nonlinear case: Lorenz-95, M = 40, N = 20, ∆ t = 0 . 05, R = I . ◮ Comparison of 4D-Var S = 1, EnKS S = 1, SDA IEnKS S = 1, SDA IEnKS S = L , and MDA IEnKS S = 1. 0.22 0.20 4D-Var S=1 0.220 0.18 4D-Var S=1 EnKS-N S=1 EnKS-N S=1 SDA IEnKS-N S=1 0.16 SDA IEnKS-N S=1 0.210 SDA IEnKS-N S=L SDA IEnKS-N S=L Smoothing analysis RMSE MDA IEnKS-N S=1 0.14 Filtering analysis RMSE MDA IEnKS-N S=1 0.200 0.12 0.195 0.10 0.190 0.09 0.185 0.08 0.180 0.175 0.07 0.170 0.06 0.165 0.05 0.160 0.155 0.04 1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50 DAW length L DAW length L 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 9 / 22

  10. Numerical experiments Application to the Lorenz-95 model ◮ Strongly nonlinear case: Lorenz-95, M = 40, N = 20, ∆ t = 0 . 20, R = I . ◮ Comparison of 4D-Var S = 1, EnKS S = 1, SDA IEnKS S = 1, SDA IEnKS S = L , and MDA IEnKS S = 1. 0.46 0.40 0.38 0.36 0.44 0.34 0.32 0.42 0.30 4D-Var S=1 EnKS-N S=1 0.28 Smoothing analysis RMSE 0.40 Filtering analysis RMSE 0.26 SDA IEnKS-N S=1 0.39 SDA IEnKS-N S=L 0.24 0.38 MDA IEnKS-N S=1 0.22 0.37 0.20 0.36 0.35 0.18 0.34 0.16 0.33 0.14 0.32 0.31 4D-Var S=1 0.12 EnKS-N S=1 0.30 SDA IEnKS-N S=1 0.29 0.10 SDA IEnKS-N S=L MDA IEnKS-N S=1 0.28 0.27 0.08 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 DAW length L DAW length L 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 10 / 22

  11. Localisation IEnKF/IEnKS: Localisation ◮ Localisation in an EnVar context is non-trivial because localisation and the evolution model do not commute: � � M k ← 0 ( C ◦ B 0 ) M T M k ← 0 B 0 M T k ← 0 � = C ◦ . (8) k ← 0 ◮ Local analysis of IEnKF, and comparison with a non-scalable optimal approach. 0.7 0.6 0.5 Analysis rmse 0.4 0.3 CL IEnKF (bundle, opt. infl., c=10, non-scalable) N=10 IEnKF-N (bundle) N=20 0.2 LA IEnKF-N (bundle, c=10, ε N =1) N=10 0.15 0 0.1 0.2 0.3 0.4 0.5 0.6 Time interval between updates 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 11 / 22

  12. Localisation IEnKF/IEnKS: Localisation ◮ Local analysis of IEnKS, and comparison with a non-scalable optimal approach (filtering performance). 0.20 Analysis RMSE 0.18 SDA IEnKS-N filtering N=20 MDA IEnKS-N filtering N=20 0.16 LA EnKS-N filtering N=10 l=10 LA MDA IEnKS-N filtering N=10 l=10 NSCL SDA IEnKS opt.infl. filtering N=10 l=10 LA SDA IEnKS-N filtering N=10 l=10 EnKS-N filtering N=20 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 DAW length L 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 12 / 22

  13. Augmented state formalism IEnKF/IEnKS: Augmented state formalism ◮ IEnKS treats parameters the way both 4D-Var and EnKF treat them. ◮ The state space is augmented from x ∈ R M to a vector � x � ∈ R M + P , z = (9) θ Technically, there is nothing more to the joint state and parameter IEnKS than in the state IEnKS. ◮ A forward model needs to be introduced for the parameters: For instance, the persistence model ( θ k +1 = θ k ), or some jittering such as a Brownian motion ( θ k +1 = θ k + ε k ). 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 13 / 22

  14. Augmented state formalism Estimation of the Lorenz-95 forcing parameter F ◮ F is static but unknown. EnKF-N EnKS-N L=50 IEnKF-N 8.10 IEnKS-N L=5 IEnKS-N L=10 IEnKS-N L=30 Analysis of parameter F 8.05 8 7.95 7.90 0 1000 2000 3000 4000 5000 Time ◮ Augmented state vector ∈ R 41 , N = 20. The forcing of the true model is F = 8. 9 th EnKF workshop, Bergen, Norway, 22-24 June 2014 M. Bocquet 14 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend