jet mass spectrum for groomed and ungroomed top jets
play

Jet Mass Spectrum for Groomed and Ungroomed Top Jets Iain Stewart - PowerPoint PPT Presentation

Jet Mass Spectrum for Groomed and Ungroomed Top Jets Iain Stewart MIT based on: Hoang, Mantry, Pathak, IS ( 1708.02586 + ongoing work ) Sante Fe Jets and Heavy Flavor W orkshop January 2018 1 model this Outline 0.012 d 0.010


  1. Jet Mass Spectrum for Groomed and Ungroomed Top Jets Iain Stewart MIT based on: Hoang, Mantry, Pathak, IS ( 1708.02586 + ongoing work ) Sante Fe Jets and Heavy Flavor W orkshop January 2018 1

  2. model this Outline 0.012 d σ 0.010 Motivation for Studying Top Jets: dM • 0.008 Top Mass from Jet Mass measurement 0.006 Quantify Soft Effects M peak m t 0.004 � 2 � � p µ M 2 = 0.002 i i ∈ J 172 174 176 178 180 M tion corrections Factorization Theorems: Ungroomed and Groomed • Calibration of Monte Carlo and Comparisons • Conclusion •

  3. The Top Quark is Special Largest Mass Largest Higgs Coupling m t = 173 GeV • i t H ∝ m i Dominates Higgs Production H 1 i t The only quark that decays before it binds into a hadron : • Top width Γ t = 1 . 4 GeV Λ QCD � 0 . 3 GeV > confinement scale u u t → bW d

  4. The Top Quark is Special Largest Mass Largest Higgs Coupling m t = 173 GeV • i t H ∝ m i Dominates Higgs Production H 1 i t The only quark that decays before it binds into a hadron : • Top width Γ t = 1 . 4 GeV Λ QCD � 0 . 3 GeV > confinement scale u m t u t → bW d Breit Wigner 1 � 2 + Γ 2 � q 2 − m 2 t t m t

  5. Why should I care about a precision ? m t Stability of the Standard Model vacuum! • m t Andreassen, Frost, Schwartz m Higgs uncertainty dominated by m t Butazzo, Degrassi, Giardino, Giudice, Sala

  6. Precision Electro-weak Measurements • Direct Measurements Gfitter group, 2014 Indirect Global Fit t 6

  7. Heaviest known elementary particle. t As heavy as 180 protons! MC Tevatron GeV m t = 174 . 34 ± 0 . 64 CMS MC m t = 172 . 44 ± 0 . 49 GeV ATLAS MC GeV m t = 172 . 84 ± 0 . 70 measured from jets with help of Monte Carlo simulations

  8. Direct Reconstruction Methods (Tevatron & LHC) jet jet b -jet p Kinematic Fit: ¯ t m 2 t = p 2 t = ( p Jb + p J 1 + p J 2 ) 2 p t jet b -jet jet 8

  9. L : t hadrons m pole , m t , m MSR , . . . t t ¯ t Theory (QFT) Simulation Λ shower = 1 GeV (Monte Carlo) m MC t Experiment Definition ? m t = m MC + ? t an additional uncertainty ∼ 1 GeV 9

  10. Mass Definitions: 1 • Pole Mass ∝ / − m pole p t Mass that naturally appears in Breit Wigner. ∆ m pole Has a (renormalon) ambiguity ∼ Λ QCD t Mass MS m t • Not compatible with Breit Wigner. No Ambiguity. � X m pole = m t + 0 . 4 α s m t + . . . t � 7 GeV � Γ t = 1 . 4 GeV • MSR Mass m MSR ( R ) (Hoang, Jain, Scimemi, IS, 2008) a mass which nicely interpolates take R = 1 GeV No Ambiguity � R > Λ QCD � Breit Wigner R ∼ Γ t 10

  11. Soft Effects in pp → t ¯ tX jet MPI / Underlying Event jet b -jet p ¯ t Perturbative soft radiation p t t Hadronization hadrons ¯ t 11

  12. pp → t ¯ t Soft Effects can be significant. eg. Jet Mass in Pythia

  13. pp → t ¯ Theory Issues for tX jet observable • suitable top mass scheme for jets • initial state radiation • Production Energy final state radiation • Q = 2 p T ∼ 1 TeV underlying event/MPI • m t = 173 GeV color reconnection • parton distributions Γ t � 1 . 4 GeV • sum large logs Q � m t � Γ t Λ QCD • hadronization •

  14. First simplification: boosted top quarks, Q = 2 p T � m t • enables us to be inclusive over decay products t Use EFT tools: Q = 2 p T ∼ 1 TeV Soft-Collinear EFT (SCET) m t = 173 GeV Heavy Quark EFT (HQET) Γ t � 1 . 4 GeV factorization, logs, Λ QCD non-perturbative effects 14

  15. Jets with Substructure t → Wb → ( u ¯ d )( b ) = 3 prong jet pp → t ¯ t

  16. pp → t ¯ Theory Issues for tX � jet observable First • e + e − → t ¯ tX � suitable top mass for jets • and the issues � initial state radiation • � final state radiation • underlying event/MPI • � color reconnection • parton distributions • � sum large logs Q � m t � Γ t • hadronization � •

  17. Fleming, Hoang, Mantry, IS (2007) Factorization for double jet - mass: Hard Functions control over mass scheme d 2 σ � � m, Q Answer � � = σ 0 H Q ( Q, µ m ) H m m, µ m , µ dM 2 t dM 2 ¯ hemi t t − Q � � s t − Q � � � � � S hemi ( � − k, � � − k � , µ ) F ( k, k � ) ˆ ˆ × J B m , Γ , � m, µ J B s ¯ m , Γ , � m, µ Hadronization QCD ( boosted HQET ) dominant Soft Jet Functions e ff ect is from Function Evolution and decay of top first moment quark close to mass shell SCET Perturbative Cross talk � s t ⇥ M 2 t � m 2 dk � dk k F ( k, k � ) Ω 1 = ⇤ Γ ⌅ m ˆ m d d HQET n-collinear n-collinear jet jet usoft particles

  18. Fleming, Hoang, Mantry, IS (2007) Factorization for double jet - mass: d 2 σ � � m, Q Answer � � = σ 0 H Q ( Q, µ m ) H m m, µ m , µ dM 2 t dM 2 ¯ hemi t t − Q � � s t − Q � � � � � S hemi ( � − k, � � − k � , µ ) F ( k, k � ) ˆ ˆ × J B m , Γ , � m, µ J B s ¯ m , Γ , � m, µ s + . . . ) + Q Ω 1 M peak � m t + Γ t ( α s + α 2 m t 0.012 d σ measure extract 0.010 this this dM 0.008 0.006 M peak m t 0.004 0.002 172 174 176 178 180 M

  19. One application: Top Mass Calibration Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS m t = m MC PRL 2016 + . . . t � determined by fit to common observable τ 2 ∼ M 2 t + M 2 2 ¯ t m pole , m t , m MSR boosted , . . . t t e + e − → t ¯ t Theory (QFT) calibration Simulation e + e − = ⇒ pp (Monte Carlo) Experiment m MC t 19

  20. Example from Fit to Pythia8 Simulation: Results: • Depend on which QFT based theory mass is used for fit. • Provides uncertainties: input: m MC = 173 GeV t m pole = 172 . 43 ± 0 . 28 GeV t m MSR = 172 . 82 ± 0 . 22 GeV t

  21. Calculate pp → t ¯ t boosted top: jet jet b -jet p T � m t p ¯ t p t jet mass jet M J b -jet jet 21

  22. pp → t ¯ Theory Issues for tX Jet Mass in Jet of radius R � jet observable • � suitable top mass for jets • can handle with � Jet veto � initial state radiation SCET/HQET • � final state radiation • underlying event/MPI • “contamination” � color reconnection • multiple channels � parton distributions • sum large logs � Q � m t � Γ t • hadronization � •

  23. N-jettiness event shapes for hadron colliders IS, Tackmann, Waalewijn (2010) X T 2 = min min { ρ jet ( p i , n t ) , ρ jet ( p i , n ¯ t ) , ρ beam ( p i ) } jet t n t ,n ¯ t i ¯ = T t 2 + T beam t beam 2 + T , 2 XCone is a particularly nice choice for jet and 2 = M 2 gives jet-mass T t J 1 Q t gives jet-veto T beam ¯ t 2 jet Ungroomed Factorization Formula: Hoang, Mantry, Pathak, IS (to appear soon) � ˆ d 2 σ H Qm ˆ S ( T beam � = tr , R, . . . ) ⊗ F ⊗ J B ⊗ J B ⊗ II ⊗ ff 2 dM 2 J 1 dM 2 J 2 d T beam PDFs 2 hadronization pert. soft hard initial state radiation generalizes ee result to LHC same Jet functions! 23

  24. Hadronization effects x 2 = Ω 2 − Ω 2 higher moments first moment dominates 1 Ω 1 , … Ω 2 Ω 2 1 give smaller effects MPI / UE effects: Ω MPI 1 jet mass from massless quarks & gluons, known that using a larger Ω MPI > Ω 1 1 accurately captures MPI effects (IS, Tackmann, Waalewijn 2015) 24

  25. pp → t ¯ t Issue is that MPI contamination is significant (Pythia), so uncertainty from this modeling may be too large for a precision measurement.

  26. Larkoski, Marzani, Soyez, Thaler 2014 Soft Drop Grooms soft radiation from the jet z > z cut θ β min( p T i , p T j ) � ∆ R ij � β ie. > z cut p T i + p T j R 0 two grooming parameters Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014 Fri, Larkoski, Schwartz, Yan 2016 26

  27. Hoang, Mantry, Pathak, IS (2017) Light Soft Drop for tops z cut ∼ 0 . 01 Q = 2 p T cosh( η J ) ⇣ Q To derive ⌘ β > Γ t ⇠ z cut fact. theorem: 4 m t 4 m t ✓ Γ t Remove soft 1 4 m 2 cut � 1 ◆ 2+ β 1 t 2+ β , z contamination. Q 2 2 m t Decouples top-jet from rest of the event! soft radiation groomed top decay products & radiation leftover “collinear-soft” radiation R

  28. Light Soft Drop for tops z cut ∼ 0 . 01 Modes: Q = 2 p T cosh( η J ) ⇣ Q ⌘ β > To derive Γ t ⇠ z cut fact. theorem: 4 m t 4 m t ✓ Γ t Remove soft 1 4 m 2 cut � 1 ◆ 1 2+ β t 2+ β , z contamination. Q 2 2 m t Decouples top-jet from rest of the event! soft radiation groomed top decay products & radiation leftover “collinear-soft” radiation R

  29. MPI contamination reduced by factor of 5 with Light Soft Drop (eg. 4.5 GeV to 0.9 GeV): 29

  30. Hoang, Mantry, Pathak, IS (2017) Factorization with Soft Drop on one jet: ⇣ ⇣ M 2 J − m 2 d � ( Φ J ) t − Q ` Z Z s 0 d Φ d D t (ˆ ⌘ s 0 , Φ d , m/Q ) s 0 , � m, µ = N ( Φ J , z cut , � , µ ) d ˆ d ` J B − ˆ dM J m t ` − mk Φ d , m Z h⇣ �⌘ 1 i 1+ β , � , µ (2 β Qz cut ) � dk S C Q h F C ( k, 1) × Q 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend