j l lions problem on the maximal regularity for non
play

J.L. Lions problem on the maximal regularity for non-autonomous - PowerPoint PPT Presentation

J.L. Lions problem on the maximal regularity for non-autonomous equations El Maati Ouhabaz, Univ. Bordeaux Marrakech, April 2018 Autonomous Equations Consider the Cauchy problem t u ( t ) + Au ( t ) = f ( t ) , t [ 0 , T ] , (1)


  1. J.L. Lions’ problem on the maximal regularity for non-autonomous equations El Maati Ouhabaz, Univ. Bordeaux Marrakech, April 2018

  2. Autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + Au ( t ) = f ( t ) , t ∈ [ 0 , T ] , (1) u ( 0 ) = 0 . A : D ( A ) ⊂ E → E is (minus) the generator of a holomorphic semigroup on E .

  3. Autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + Au ( t ) = f ( t ) , t ∈ [ 0 , T ] , (1) u ( 0 ) = 0 . A : D ( A ) ⊂ E → E is (minus) the generator of a holomorphic semigroup on E . Definition Maximal L p -regularity: f ∈ L p ( 0 , T , E ) ⇒ ∃ u ∈ W 1 , p ( 0 , T , E ) ∩ L p ( 0 , T , D ( A )) satisfying ( 1 ) .

  4. Autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + Au ( t ) = f ( t ) , t ∈ [ 0 , T ] , (1) u ( 0 ) = 0 . A : D ( A ) ⊂ E → E is (minus) the generator of a holomorphic semigroup on E . Definition Maximal L p -regularity: f ∈ L p ( 0 , T , E ) ⇒ ∃ u ∈ W 1 , p ( 0 , T , E ) ∩ L p ( 0 , T , D ( A )) satisfying ( 1 ) . ⇒ An apriori estimate: � u � L p ( 0 , T , E ) + � ∂ t u � L p ( 0 , T , E ) + � Au ( . ) � L p ( 0 , T , E ) ≤ C � f � L p ( 0 , T , E ) .

  5. Autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + Au ( t ) = f ( t ) , t ∈ [ 0 , T ] , (1) u ( 0 ) = 0 . A : D ( A ) ⊂ E → E is (minus) the generator of a holomorphic semigroup on E . Definition Maximal L p -regularity: f ∈ L p ( 0 , T , E ) ⇒ ∃ u ∈ W 1 , p ( 0 , T , E ) ∩ L p ( 0 , T , D ( A )) satisfying ( 1 ) . ⇒ An apriori estimate: � u � L p ( 0 , T , E ) + � ∂ t u � L p ( 0 , T , E ) + � Au ( . ) � L p ( 0 , T , E ) ≤ C � f � L p ( 0 , T , E ) . Works by Da Prato-Grisvard, Dore-Venni, Lamberton, L. Weis, Kalton-Lancien, + . . . + . . . + . . .

  6. de Simon(64): Always true if E = H : Hilbert space.

  7. de Simon(64): Always true if E = H : Hilbert space. Dore-Veni(’87): E is UMD: L p -MR holds if � A is � ≤ Ce w | s | ∀ s ∈ R for some w < π/ 2 .

  8. de Simon(64): Always true if E = H : Hilbert space. Dore-Veni(’87): E is UMD: L p -MR holds if � A is � ≤ Ce w | s | ∀ s ∈ R for some w < π/ 2 . Lamberton(’87): MR holds for sub-Markovian semigroups on E = L q (Ω , µ ) , 1 < q < ∞ .

  9. de Simon(64): Always true if E = H : Hilbert space. Dore-Veni(’87): E is UMD: L p -MR holds if � A is � ≤ Ce w | s | ∀ s ∈ R for some w < π/ 2 . Lamberton(’87): MR holds for sub-Markovian semigroups on E = L q (Ω , µ ) , 1 < q < ∞ . uss(’97), Coulhon-Duong(2000), E = L q (Ω , µ ) + good upper Hieber-Pr¨ bounds on the heat kernel of A .

  10. de Simon(64): Always true if E = H : Hilbert space. Dore-Veni(’87): E is UMD: L p -MR holds if � A is � ≤ Ce w | s | ∀ s ∈ R for some w < π/ 2 . Lamberton(’87): MR holds for sub-Markovian semigroups on E = L q (Ω , µ ) , 1 < q < ∞ . uss(’97), Coulhon-Duong(2000), E = L q (Ω , µ ) + good upper Hieber-Pr¨ bounds on the heat kernel of A . L. Weis(2001): E = L q , MR is equivalent to R -boundedness of e − zA (complex z ∈ Σ θ ): � 1 � 1 N N � r j ( t ) e − z j A f j � E dt ≤ C � � � r j ( t ) f j � E dt ∀ f j ∈ E , ∀ z j ∈ Σ θ 0 0 j = 0 j = 0 where ( r j ) is a sequence of independent {− 1 , 1 } -valued random variables on [ 0 , 1 ] .

  11. de Simon(64): Always true if E = H : Hilbert space. Dore-Veni(’87): E is UMD: L p -MR holds if � A is � ≤ Ce w | s | ∀ s ∈ R for some w < π/ 2 . Lamberton(’87): MR holds for sub-Markovian semigroups on E = L q (Ω , µ ) , 1 < q < ∞ . uss(’97), Coulhon-Duong(2000), E = L q (Ω , µ ) + good upper Hieber-Pr¨ bounds on the heat kernel of A . L. Weis(2001): E = L q , MR is equivalent to R -boundedness of e − zA (complex z ∈ Σ θ ): � 1 � 1 N N � r j ( t ) e − z j A f j � E dt ≤ C � � � r j ( t ) f j � E dt ∀ f j ∈ E , ∀ z j ∈ Σ θ 0 0 j = 0 j = 0 where ( r j ) is a sequence of independent {− 1 , 1 } -valued random variables on [ 0 , 1 ] . Kalton-Lancien(2000): ”negative results”.

  12. Non-autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + A ( t ) u ( t ) = f ( t ) , t ∈ [ 0 , T ] , ( NACP ) u ( 0 ) = u 0 . A ( t ) : D ( A ( t )) ⊂ E → E · · ·

  13. Non-autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + A ( t ) u ( t ) = f ( t ) , t ∈ [ 0 , T ] , ( NACP ) u ( 0 ) = u 0 . A ( t ) : D ( A ( t )) ⊂ E → E · · · Definition Maximal L p -regularity: f ∈ L p ( 0 , T , E ) ⇒ ∃ u ∈ W 1 , p ( 0 , T , E ) , t → A ( t ) u ( t ) ∈ L p ( 0 , T , E ) unique which satisfies ( NACP ) in L p − sense .

  14. Non-autonomous Equations Consider the Cauchy problem � ∂ t u ( t ) + A ( t ) u ( t ) = f ( t ) , t ∈ [ 0 , T ] , ( NACP ) u ( 0 ) = u 0 . A ( t ) : D ( A ( t )) ⊂ E → E · · · Definition Maximal L p -regularity: f ∈ L p ( 0 , T , E ) ⇒ ∃ u ∈ W 1 , p ( 0 , T , E ) , t → A ( t ) u ( t ) ∈ L p ( 0 , T , E ) unique which satisfies ( NACP ) in L p − sense . Works by: H. Amann, M. Giga, Y. Giga, H. Sohr, Pr¨ uss-Schnaubelt, Arendt-Chill-Fornaro-Poupaud, Batty-Chill-Srivastava, . . . assuming: D ( A ( t )) = D ( A ( 0 )) = D + continuity of t → A ( t ) u .

  15. J.L. Lions’ theorems Assumptions-Notations: H , V Hilbert spaces, V ⊂ H continuously and densely, and a ( t , · , · ) : V × V → C sesquilinear forms s.t. : - | a ( t , u , v ) | ≤ M � u � V � v � V , u , v ∈ V , t ∈ [ 0 , T ]; - Re a ( t , u , u ) ≥ δ � u � 2 V − k � u � 2 H , - t �→ a ( t , u , v ) measurable for all u , v ∈ V . Denote by A ( t ) the associated operator with the form a ( t , ., . ) .

  16. J.L. Lions’ theorems Assumptions-Notations: H , V Hilbert spaces, V ⊂ H continuously and densely, and a ( t , · , · ) : V × V → C sesquilinear forms s.t. : - | a ( t , u , v ) | ≤ M � u � V � v � V , u , v ∈ V , t ∈ [ 0 , T ]; - Re a ( t , u , u ) ≥ δ � u � 2 V − k � u � 2 H , - t �→ a ( t , u , v ) measurable for all u , v ∈ V . Denote by A ( t ) the associated operator with the form a ( t , ., . ) . Example: � � a kl ( t , x ) ∂ l u ∂ k v dx , W 1 , 2 (Ω) ⊂ V ⊂ W 1 , 2 (Ω) a ( t , u , v ) = 0 Ω k , l � A ( t ) = − ∂ k ( a kl ( t , x ) ∂ l ) + boundary conditions given by V . k , l - If V = W 1 , 2 (Ω) then we have the Dirichlet boundary conditions. 0 - If V = W 1 , 2 (Ω) then we have Neumann type boundary conditions.

  17. Theorem (J.L. Lions) For u 0 ∈ H, the non-autonomous Cauchy problem (NACP) has maximal L 2 -regularity in the dual space V ′ .

  18. Theorem (J.L. Lions) For u 0 ∈ H, the non-autonomous Cauchy problem (NACP) has maximal L 2 -regularity in the dual space V ′ . Note however that working in V ′ is less interesting: when dealing with boundary value problems, one has to work in H = L 2 in order to identify the boundary conditions.

  19. Theorem (J.L. Lions) For u 0 ∈ H, the non-autonomous Cauchy problem (NACP) has maximal L 2 -regularity in the dual space V ′ . Note however that working in V ′ is less interesting: when dealing with boundary value problems, one has to work in H = L 2 in order to identify the boundary conditions. Theorem (J.L. Lions) - If t �→ a ( t , u , v ) is C 1 and a ( t , ., . ) are symmetric then (NACP) with u 0 = 0 has maximal L 2 -regularity in H. - If t �→ a ( t , u , v ) is C 2 and a ( t , ., . ) are symmetric then (NACP) with u 0 ∈ D ( A ( 0 )) has maximal L 2 -regularity in H.

  20. J.L. Lions’ problem (1961) Problem 1 : Does maximal L 2 -regularity hold in H without C 1 assumption on t �→ a ( t , u , v ) when u 0 = 0 ?

  21. J.L. Lions’ problem (1961) Problem 1 : Does maximal L 2 -regularity hold in H without C 1 assumption on t �→ a ( t , u , v ) when u 0 = 0 ? Problem 2 : Does maximal L 2 -regularity hold for all u 0 ∈ D ( A ( 0 )) when t �→ a ( t , u , v ) is C 1 ?

  22. J.L. Lions’ problem (1961) Problem 1 : Does maximal L 2 -regularity hold in H without C 1 assumption on t �→ a ( t , u , v ) when u 0 = 0 ? Problem 2 : Does maximal L 2 -regularity hold for all u 0 ∈ D ( A ( 0 )) when t �→ a ( t , u , v ) is C 1 ? Bardos (1971): u 0 ∈ V is allowed provided D ( A ( t ) 1 / 2 ) = V and strong regularity of A ( t ) with respect to t .

  23. J.L. Lions’ problem (1961) Problem 1 : Does maximal L 2 -regularity hold in H without C 1 assumption on t �→ a ( t , u , v ) when u 0 = 0 ? Problem 2 : Does maximal L 2 -regularity hold for all u 0 ∈ D ( A ( 0 )) when t �→ a ( t , u , v ) is C 1 ? Bardos (1971): u 0 ∈ V is allowed provided D ( A ( t ) 1 / 2 ) = V and strong regularity of A ( t ) with respect to t . Theorem (Ou-Spina, J.D.E 2010) older continuous in the sense: for some α > 1 Suppose t �→ a ( t , u , v ) is H¨ 2 , | a ( t , u , v ) − a ( s , u , v ) | ≤ K | t − s | α � u � V � v � V for all s , t ∈ [ 0 , T ] and u , v ∈ V. Then (NACP) has maximal L p -regularity in H when u 0 = 0 . ⇒ partial answer to Problem 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend