j 0 1 noncommutative torus d y d x r q 1 0 c t 2 c s 1 o
play

j =0 1 Noncommutative torus d y d x = R \ Q 1.0 C ( T 2 ) ' C ( - PowerPoint PPT Presentation

The term in the heat kernel a 4 Trace ( a exp( t )) expansion of nonccommutative tori Alain Connes and Farzad Fa ti izadeh X 0 ( a a 2 j ) t j m/ 2 j =0 1 Noncommutative torus d y d x = R \ Q 1.0 C ( T 2


  1. The term in the heat kernel a 4 Trace ( a exp( − t ∆ )) expansion of nonccommutative tori ∼ ∞ Alain Connes and Farzad Fa ti izadeh X ϕ 0 ( a a 2 j ) t j − m/ 2 j =0 1

  2. Noncommutative torus d y d x = θ ∈ R \ Q 1.0 C ( T 2 θ ) ' C ( S 1 ) o Z 0.8 0.6 V U = e 2 π i θ UV 0.4 U ∗ = U − 1 0.2 V ∗ = V − 1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 2

  3. Derivations θ ) → C ∞ ( T 2 δ j : C ∞ ( T 2 θ ) δ 1 ( U ) = U δ 1 ( V ) = 0 α ( s 1 ,s 2 ) ( U m V n ) δ 2 ( U ) = 0 = δ 2 ( V ) = V e i ( s 1 m + s 2 n ) U m V n 3

  4. Laplacians ∆ = δ 2 1 + δ 2 2 : C ∞ ( T 2 θ ) → C ∞ ( T 2 θ ) ∆ h = e h/ 2 ∆ e h/ 2 h = h ∗ ∈ C ∞ ( T 2 θ ) 4

  5. Conformal factor h = h ∗ ∈ C ∞ ( T 2 θ ) ϕ 0 : C ( T 2 θ ) → C ϕ : C ( T 2 θ ) → C 0 1 @ X ϕ ( a ) = ϕ 0 ( a e − h ) a m,n U m V n A = a 0 , 0 ϕ 0 m,n ∈ Z ϕ ( x y ) = ϕ ( y σ i ( x )) ϕ 0 ( x y ) = ϕ 0 ( y x ) σ t ( x ) = e ith x e − ith 5

  6. Functional calculus w. the modular automorphism r ( x ) = log σ i ( x ) = � h x + x h x 1 , . . . , x n ∈ C ( T 2 θ ) Z R n e − i ( t 1 s 1 + ··· + t n s n ) g ( t 1 , . . . , t n ) dt 1 · · · dt n L ( s 1 , . . . , s n ) = Z L ( r , . . . , r )( x 1 · · · x n ) = R n σ t 1 ( x 1 ) · · · σ t n ( x n ) g ( t 1 , . . . , t n ) dt 1 · · · dt n 6

  7. Heat kernel expansion a e − t ∆ h � ∼ � Tr → 0 t ϕ 0 ( a a 0 ) t − 1 + ϕ 0 ( a a 2 ) + ϕ 0 ( a a 4 ) t + · · · a 0 = π e − h � 2 1 ( ` ) + � 2 � � a 2 = R 1 ( r ) 2 ( ` ) + R 2 ( r , r ) ( � 1 ( ` ) · � 1 ( ` ) + � 2 ( ` ) · � 2 ( ` )) ` = h 2 ∈ C ∞ ( T 2 θ ) ( Connes-Moscovici; 2 π (2 + e s 1 ( − 2 + s 1 ) + s 1 ) s 1 R 1 ( s 1 ) = 4 e ( − 1 + e s 1 ) 2 s 1 Fathizadeh-Khalkhali 2011 ) R 2 ( s 1 , s 2 ) = − 4 π (cosh [ s 2 ] s 1 ( s 1 + s 2 ) − cosh [ s 1 ] s 2 ( s 1 + s 2 ) − ( s 1 − s 2 ) (sinh [ s 1 ] + sinh [ s 2 ] − sinh [ s 1 + s 2 ] + s 1 + s 2 )) sinh 2 ⇥ 1 ⇥ s 1 ⇥ s 2 ⇤ ⇤ ⇤ sinh sinh 2 ( s 1 + s 2 ) s 1 s 2 ( s 1 + s 2 ) 2 2 7

  8. Connes-Tretkoff (Cohen) calculation in late 80’s ϕ 0 ( a 2 ) = a lengthy expression that is not a priori equal to 0. Their further calculations in 2009 confirmed the vanishing of the expression, hence the analog of the Gauss-Bonnet theorem. For general translation-invariant conformal structures: Fathizdeh-Khalkhali 2010. 8

  9. Symbolic calculus (Connes 1980) Z Z e − is · ξ ρ ( ξ ) α s ( x ) ds d ξ ∆ h ( x ) = P ρ ( x ) = (2 π ) − 2 \ ρ = p 2 + p 1 + p 0 : R 2 → C ∞ ( T 2 θ ) 2 ) e h p 2 ( ξ ) = ( ξ 2 1 + ξ 2 p 1 ( ξ ) = 2 ξ 1 e h/ 2 δ 1 ( e h/ 2 ) + 2 ξ 2 e h/ 2 δ 2 ( e h/ 2 ) p 0 ( ξ ) = e h/ 2 δ 2 1 ( e h/ 2 ) + e h/ 2 δ 2 2 ( e h/ 2 ) 9

  10. Heat kernel 4 γ 2 > 1 Z e − t λ ( ∆ h − λ ) − 1 d λ e − t ∆ h = 2 π i γ - 1 1 2 3 4 5 6 - 2 R λ ∼ ( ∆ h − λ ) − 1 - 4 σ ( R λ ) = r 0 ( ξ , λ ) + r 1 ( ξ , λ ) + r 2 ( ξ , λ ) + r 3 ( ξ , λ ) + r 4 ( ξ , λ ) + · · · r j ( t ξ , t 2 λ ) = t − 2 − j r j ( ξ , λ ) Ti e local geome ts ic tf rms: 1 Z Z e − λ r 2 n ( ξ , λ ) d λ d ξ a 2 n = 2 π i R 2 γ 10

  11. a 4 = � e 2 ` ⇣ � 2 1 � 2 � 4 1 ( ` ) + � 4 � � � � K 1 ( r ) 2 ( ` ) + K 2 ( r ) 2 ( ` ) + K 3 ( r , r ) (( � 1 � 2 ( ` )) · ( � 1 � 2 ( ` ))) � 2 1 ( ` ) · � 2 2 ( ` ) + � 2 2 ( ` ) · � 2 � 2 1 ( ` ) · � 2 1 ( ` ) + � 2 2 ( ` ) · � 2 � � � � + K 4 ( r , r ) 1 ( ` ) + K 5 ( r , r ) 2 ( ` ) � 1 ( ` ) · � 3 � 1 � 2 + � 2 ( ` ) · � 3 � 2 � � � � �� + K 6 ( r , r ) 1 ( ` ) + � 1 ( ` ) · 2 ( ` ) 2 ( ` ) + � 2 ( ` ) · 1 � 2 ( ` ) � 3 � 1 � 2 · � 1 ( ` ) + � 3 � 2 � � � � � � + K 7 ( r , r ) 1 ( ` ) · � 1 ( ` ) + 2 ( ` ) 2 ( ` ) · � 2 ( ` ) + 1 � 2 ( ` ) · � 2 ( ` ) � 1 ( ` ) · � 1 ( ` ) · � 2 2 ( ` ) + � 2 ( ` ) · � 2 ( ` ) · � 2 � � + K 8 ( r , r , r ) 1 ( ` ) + K 9 ( r , r , r ) ( � 1 ( ` ) · � 2 ( ` ) · ( � 1 � 2 ( ` )) + � 2 ( ` ) · � 1 ( ` ) · ( � 1 � 2 ( ` ))) + K 10 ( r , r , r ) ( � 1 ( ` ) · ( � 1 � 2 ( ` )) · � 2 ( ` ) + � 2 ( ` ) · ( � 1 � 2 ( ` )) · � 1 ( ` )) � 1 ( ` ) · � 2 2 ( ` ) · � 1 ( ` ) + � 2 ( ` ) · � 2 � � + K 11 ( r , r , r ) 1 ( ` ) · � 2 ( ` ) � 2 1 ( ` ) · � 2 ( ` ) · � 2 ( ` ) + � 2 � � + K 12 ( r , r , r ) 2 ( ` ) · � 1 ( ` ) · � 1 ( ` ) + K 13 ( r , r , r ) (( � 1 � 2 ( ` )) · � 1 ( ` ) · � 2 ( ` ) + ( � 1 � 2 ( ` )) · � 2 ( ` ) · � 1 ( ` )) � 2 1 ( ` ) · � 1 ( ` ) · � 1 ( ` ) + � 2 � � + K 14 ( r , r , r ) 2 ( ` ) · � 2 ( ` ) · � 2 ( ` ) � 1 ( ` ) · � 1 ( ` ) · � 2 1 ( ` ) + � 2 ( ` ) · � 2 ( ` ) · � 2 � � + K 15 ( r , r , r ) 2 ( ` ) � 1 ( ` ) · � 2 1 ( ` ) · � 1 ( ` ) + � 2 ( ` ) · � 2 � � + K 16 ( r , r , r ) 2 ( ` ) · � 2 ( ` ) + K 17 ( r , r , r , r ) ( � 1 ( ` ) · � 1 ( ` ) · � 2 ( ` ) · � 2 ( ` ) + � 2 ( ` ) · � 2 ( ` ) · � 1 ( ` ) · � 1 ( ` )) + K 18 ( r , r , r , r ) ( � 1 ( ` ) · � 2 ( ` ) · � 1 ( ` ) · � 2 ( ` ) + � 2 ( ` ) · � 1 ( ` ) · � 2 ( ` ) · � 1 ( ` )) + K 19 ( r , r , r , r ) ( � 1 ( ` ) · � 2 ( ` ) · � 2 ( ` ) · � 1 ( ` ) + � 2 ( ` ) · � 1 ( ` ) · � 1 ( ` ) · � 2 ( ` )) ⌘ 11 + K 20 ( r , r , r , r ) ( � 1 ( ` ) · � 1 ( ` ) · � 1 ( ` ) · � 1 ( ` ) + � 2 ( ` ) · � 2 ( ` ) · � 2 ( ` ) · � 2 ( ` )) .

  12. Explicit formulas 3 s 1 4 e s 1 + e 2 s 1 + 1 s 1 − 3 e 2 s 1 + 3 2 �� � � K 1 ( s 1 ) = − 4 π e ( e s 1 − 1) 4 s 1 K num ( s 1 , s 2 ) 3 K 3 ( s 1 , s 2 ) = ( e s 1 − 1) 2 ( e s 2 − 1) 2 ( e s 1 + s 2 − 1) 4 s 1 s 2 ( s 1 + s 2 ) h 3 s 1 2 + 3 s 2 K num e s 1 + s 2 − 1 � � � ( s 1 , s 2 ) = 16 e ( e s 1 − 1) ( e s 2 − 1) 2 π 3 − 5 e s 1 − e s 2 + 6 e s 1 + s 2 − e 2 s 1 + s 2 − 5 e s 1 +2 s 2 + 3 e 2 s 1 +2 s 2 + 3 � � s 1 + e s 1 + 5 e s 2 − 6 e s 1 + s 2 + 5 e 2 s 1 + s 2 + e s 1 +2 s 2 − 3 e 2 s 1 +2 s 2 − 3 � � s 2 e s 1 + s 2 − 1 � � − 2 ( e s 1 − e s 2 ) − e s 1 − e s 2 − e 2 s 1 + s 2 − e s 1 +2 s 2 + 2 e 2 s 1 +2 s 2 + 2 � � s 1 s 2 +2 e s 1 ( e s 2 − 1) 3 � e s 1 − e s 1 + s 2 + 2 e 2 s 1 + s 2 − 2 s 2 � 1 i − 2 e s 2 ( e s 1 − 1) 3 � e s 2 − e s 1 + s 2 + 2 e s 1 +2 s 2 − 2 � s 2 2 12

  13. Rearrangement lemma n Z ∞ ρ j ( e h u + 1) − m j u | m | − 3 du Y ( e h u + 1) − m 0 m = ( m 0 , m 1 , . . . , m n ) ∈ Z n +1 > 0 0 j =1 ρ 1 , . . . , ρ n ∈ C ( T 2 θ ) = σ i ( x ) = e r ( x ) = e � h x e h e − ( | m | − 2) h F v m ( σ i , . . . , σ i )( ρ 1 · · · ρ n ) ! − m j j n Z ∞ x | m | − 3 Y Y F v m ( u 1 , . . . , u n ) = u ν + 1 x dx ( x + 1) m 0 0 ν =1 j =1 13

  14. More noncommutative features e − h δ j 1 ( e h ) = G 1 ( r )( δ j 1 ( h )) e − h δ j 1 δ j 2 ( e h ) = G 1 ( r )( δ j 1 δ j 2 ( h ))+ G 2 ( r , r ) ( δ j 1 ( h ) · δ j 2 ( h ) + δ j 2 ( h ) · δ j 1 ( h )) e − h δ j 1 δ j 2 δ j 3 ( e h ) = G 1 ( r )( ⇤ 3 , 1 ( h )) + G 2 ( r , r )( ⇤ 3 , 2 ( h )) + G 3 ( r , r , r )( ⇤ 3 , 3 ( h )) e − h δ j 1 δ j 2 δ j 3 δ j 4 ( e h ) = G 1 ( r )( ⇤ 4 , 1 ( h ))+ G 2 ( r , r )( ⇤ 4 , 2 ( h ))+ G 3 ( r , r , r )( ⇤ 4 , 3 ( h ))+ G 4 ( r , r , r , r )( ⇤ 4 , 4 ( h )) 14

  15. ⇤ 3 , 1 ( h ) = δ j 1 δ j 2 δ j 3 ( h ) ⇤ 3 , 2 ( h ) = δ j 1 ( h ) · ( δ j 2 δ j 3 ) ( h ) + δ j 2 ( h ) · ( δ j 1 δ j 3 ) ( h ) + ( δ j 1 δ j 2 ) ( h ) · δ j 3 ( h ) + δ j 3 ( h ) · ( δ j 1 δ j 2 ) ( h ) + ( δ j 1 δ j 3 ) ( h ) · δ j 2 ( h ) + ( δ j 2 δ j 3 ) ( h ) · δ j 1 ( h ) ⇤ 3 , 3 ( h ) = δ j 1 ( h ) · δ j 2 ( h ) · δ j 3 ( h ) + δ j 1 ( h ) · δ j 3 ( h ) · δ j 2 ( h ) + δ j 2 ( h ) · δ j 1 ( h ) · δ j 3 ( h ) + δ j 2 ( h ) · δ j 3 ( h ) · δ j 1 ( h ) + δ j 3 ( h ) · δ j 1 ( h ) · δ j 2 ( h ) + δ j 3 ( h ) · δ j 2 ( h ) · δ j 1 ( h ) ⇤ 4 , 1 ( h ) = ( δ j 1 δ j 2 δ j 3 δ j 4 ) ( h ) ⇤ 4 , 2 ( h ) = δ j 1 ( h ) · ( δ j 2 δ j 3 δ j 4 ) ( h )+ δ j 2 ( h ) · ( δ j 1 δ j 3 δ j 4 ) ( h )+( δ j 1 δ j 2 ) ( h ) · ( δ j 3 δ j 4 ) ( h )+ δ j 3 ( h ) · ( δ j 1 δ j 2 δ j 4 ) ( h ) + ( δ j 1 δ j 3 ) ( h ) · ( δ j 2 δ j 4 ) ( h ) + ( δ j 2 δ j 3 ) ( h ) · ( δ j 1 δ j 4 ) ( h ) + ( δ j 1 δ j 2 δ j 3 ) ( h ) · δ j 4 ( h )+ δ j 4 ( h ) · ( δ j 1 δ j 2 δ j 3 ) ( h )+( δ j 1 δ j 4 ) ( h ) · ( δ j 2 δ j 3 ) ( h )+( δ j 2 δ j 4 ) ( h ) · ( δ j 1 δ j 3 ) ( h ) + ( δ j 1 δ j 2 δ j 4 ) ( h ) · δ j 3 ( h ) + ( δ j 3 δ j 4 ) ( h ) · ( δ j 1 δ j 2 ) ( h ) + ( δ j 1 δ j 3 δ j 4 ) ( h ) · δ j 2 ( h ) + ( δ j 2 δ j 3 δ j 4 ) ( h ) · δ j 1 ( h ) 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend